16 research outputs found

    Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella enterica </it>serotype Enteritidis (SE) is considered to be one of the most potent pathogenic <it>Salmonella </it>serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in <it>Escherichia coli </it>by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in <it>Staphylococcus carnosus</it>, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes.</p> <p>Results</p> <p>Both SefA and H:gm were translocated to the outer membrane in <it>Escherichia coli</it>. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His<sub>6</sub>) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from <it>Staphylococcus carnosus </it>suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis.</p> <p>Conclusion</p> <p>Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of <it>E. coli </it>for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in <it>Staphylococcus carnosus </it>shows that the distribution of the surface protein on each cell was comparatively very narrow in <it>E. coli</it>, the <it>E. coli </it>outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the <it>Escherichia coli </it>AIDA autotransporter efficiency.</p

    Studies on translation initiation and gene expression in Escherichia coli

    No full text
    In prokaryotes, several mRNA sequences surrounding the initiation codon have been found to influence the translation process; these include the downstream region and its codon context, the Shine-Dalgarno sequence and the S1 ribosomal protein-binding site. In this thesis, the purpose has been to study the role of the downstream region and Shine-Dalgarno-like sequences on early translation elongation and gene expression in Escherichia coli. The downstream region (DR) after the initiation codon (around five to seven codons), has an important role in the initiation of translation. We find that most of the codons which give very low gene expression at +2 (considering AUG as +1), reach 5 to 10 fold higher expression when those codons are positioned posteriori to +2, with the exception of the NGG codons. The NGG codons abort the translation process if located within the first five codons of the DR, due to peptidyl-tRNA drop-off. However, when the NGG codons are situated further down from the DR, the protein expression was increased at the same level of expression as in the presence of any other codon. The Shine-Dalgarno (SD) is an important region of initiation in translation of bacteria. In spite of this, it has been found that Gram-negative bacteria could translate mRNAs with weak or non-functional SD, while the DR carries out a main role in the efficiency of translation. In addition, positions of SD and SD-like sequences are very important to direct initiation of translation in the choice between two possible initiation codons. A strong SD between two initiation sites will favor the second initiation site if it consists of a canonical start codon followed by a good DR. The results suggest that the mRNA sequences surrounding the initiation codon: the downstream region and the Shine-Dalgarno and SD-like sequences, are very important contributors to the translation level and gene expression in Escherichia coli

    A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli

    No full text
    The influences on gene expression by codons at positions +2, +3, +5 and +7 downstream of the initiation codon have been compared. Most of the +2 codons that are known to give low gene expression are associated with a higher expression if placed at the later positions. The NGG codons AGG, CGG, UGG and GGG, but not GGN or GNG (where N is non-G), are unique since they are associated with a very low gene expression also if located at positions +2, +3 and +5. All codons, including NGG, give a normal gene expression if placed at positions +7. The negative effect by the NGG codons is true for both the lacZ and 3A′ model genes. The low expression is suggested to originate at the translational level, although it is not the result of mRNA secondary structure or a lowered intracellular mRNA pool

    Transient Erythromycin Resistance Phenotype Associated with Peptidyl-tRNA Drop-Off on Early UGG and GGG Codonsâ–ż

    No full text
    Expression of minigenes encoding tetra- or pentapeptides MXLX or MXLXV (E peptides), where X is a nonpolar amino acid, renders cells erythromycin resistant whereas expression of minigenes encoding tripeptide MXL does not. By using a 3A′ reporter gene system beginning with an E-peptide-encoding sequence, we asked whether the codons UGG and GGG, which are known to promote peptidyl-tRNA drop-off at early positions in mRNA, would result in a phenotype of erythromycin resistance if located after this sequence. We find that UGG or GGG, at either position +4 or +5, without a following stop codon, is associated with an erythromycin resistance phenotype upon gene induction. Our results suggest that, while a stop codon at +4 gives a tripeptide product (MIL) and erythromycin sensitivity, UGG or GGG codons at the same position give a tetrapeptide product (MILW or MILG) and phenotype of erythromycin resistance. Thus, the drop-off event on GGG or UGG codons occurs after incorporation of the corresponding amino acid into the growing peptide chain. Drop-off gives rise to a peptidyl-tRNA where the peptide moiety functionally mimics a minigene peptide product of the type previously associated with erythromycin resistance. Several genes in Escherichia coli fulfill the requirements of high mRNA expression and an E-peptide sequence followed by UGG or GGG at position +4 or +5 and should potentially be able to give an erythromycin resistance phenotype

    Roles of PDZ-dependent Interactions and N-glycosylation in G Protein-coupled Estrogen Receptor 1 (GPER1)/GPR30-mediated Stimulation of ERK1/2 Activity

    No full text
    G protein-coupled receptor 30 (GPR30) is a G protein-coupled receptor (GPCR) that is attracting considerable attention in breast cancer and cardiometabolic regulation. Following reports that GPR30 is required for some rapid estrogen responses, e.g. increased cAMP production and ERK1/2 activity, in estrogen receptor (ER)-negative cells, GPR30 was renamed G protein-coupled estrogen receptor 1 (GPER1). However, many questions remain about the identity of the cognate receptor ligand, receptor-effector coupling, and receptor membrane trafficking. To address the mechanism by which human GPR30 activates ERK1/2, we used HEK293 cells with and without ectopic expression of GPR30. Specifically, we investigated the role of the type I PSD-95/Discs-large/ZO-1 homology (PDZ) motif at the receptor C terminus (-SSAV) and three consensus sites for N glycosylation (N-X-S/T) in the receptor N-terminal domain (N25, N32, N44). We found previously that the C-terminal PDZ motif enables the receptor to interact with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, and this interaction is necessary for retaining the receptor in the plasma membrane and mediating a constitutive decrease in cAMP production that is not inhibited by pertussis toxin, thus independent of Gi/o. Here, we found that the receptor also constitutively increases ERK1/2 activity. Interestingly, this increase was inhibited by PTX as well as by wortmannin, but not by AG1478, indicating it is mediated by Gi/o and phosphoinositide 3-kinase (PI3K) but not epidermal growth factor receptor (EGFR) transactivation. Deleting the receptor PDZ motif or knocking down AKAP5 also inhibited the increase, showing that the PDZ interaction is also necessary for this response. Interestingly, the proposed GPR30 agonist G-1 increased ERK1/2 activity in a GPR30-dependent manner, but this increase was only observed at very low levels of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif, which completely inhibited the constitutive increase in ERK1/2 activity, did not inhibit the G-1-stimulated increase. Mutating the potential N-glycosylation residues N25 or N32 to I in the GPR30 N-terminal domain did not prevent receptor plasma membrane expression or ERK1/2 activation. On the other hand, mutating N44 to I completely prevented both plasma membrane expression and ERK1/2 activation, and caused receptor degradation. Thus, the PDZ-dependent receptor interaction with SAP97 and AKAP5, and therefore plasma membrane retention, is necessary for constitutive GPR30-mediated stimulation of ERK1/2 activation, whereas G-1-stimulated ERK1/2 activation may remain following constitutive internalization. On the other hand, N-glycosylation of N44 appears to be necessary for maturation of the receptor to the plasma membrane. Support or Funding Information Swedish Research Council and Swedish Cancer Foundation This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal

    Human G protein-coupled Receptor 30 (GPR30) is N -glycosylated and N-terminal Domain Asparagine 44 is Required for Receptor Structure and Activity

    No full text
    GPR30, or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used HEK293 cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targeting the receptor N-terminal domain (N-domain) to investigate the role of N -glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated ERK1/2 activity. GPR30 expression was complex with receptor species spanning from about 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N -glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N -glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at about 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional roles

    G protein-coupled Receptor 30 (GPR30) PDZ-dependently and Constitutively Increases ERK1/2 Signaling Through Calcineurin and Kinase Suppressor of Ras 2 (KSR2)

    No full text
    The objective of the present study was to map the mechanism whereby G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor (GPER), stimulates extracellular signal-regulated kinase (ERK)1/2 signaling. GPR30 plays important roles in cancer and cardiometabolic regulation. We showed recently that GPR30 forms a plasma membrane complex through its C-terminal type I PSD-95/Discs-large/ZO-1 homology (PDZ) motif with a membrane-associated guanylate kinase (MAGUK) and protein kinase A (PKA)-anchoring protein 5 (AKAP5), and AKAP5-anchored PKA regulatory subunit RII suppresses receptor endocytosis and enables the receptor to constitutively inhibit cAMP production. Here, we investigated if this PDZ-dependent GPR30 complex also regulates ERK1/2 signaling. To do so, human and mouse GPR30 were ectopically expressed in HEK293 cells and MDCK cells, and receptors and effectors were monitored by immunoblotting, immunoprecipitation, confocal immunofluorescence microscopy, split luciferase reporter techniques, and reporter gene assays. We found that GPR30 constitutively increased extracellular signal-regulated kinase (ERK) 1/2 activity in several cell systems. The response was dependent on an intact receptor PDZ motif. Furthermore, knocking down AKAP5 or inhibiting calcineurin with FK506 inhibited the receptor response. GPR30 PDZ-dependently inhibited basal NFAT signaling, consistent with the receptor favoring AKAP5-anchoring of calcineurin. The calcineurin substrate kinase suppressor of Ras 2 (KSR2), a mitogen-activated protein kinase (MAPK) scaffold, enhanced the GPR30-promoted response, also dependently on the receptor PDZ motif. GPR30 also PDZ-dependently favored a membrane KSR2 complex at the expense of the monomeric form. On the other hand, disrupting AKAP5-PKA RII interaction with St-Ht31, or inhibiting protein kinase C (PKC) with GF109203X or epidermal growth factor receptor (EGFR) tyrosine kinase with AG1478 had no effect on the GPR30-stimulated response. FK506 also increased the amount of GPR30 in the plasma membrane, thus acting opposite to St-Ht31, which increased receptor endocytosis. We conclude that the PDZ-dependent GPR30 complex with AKAP5 includes calcineurin, which favors GPR30 endocytosis and enables the receptor to constitutively increase ERK1/2 signaling through KSR2. Support or Funding Information Swedish Cancer Foundatio

    Identification of the <em>Drosophila</em> and <em>Tribolium</em> receptors for the recently discovered insect RYamide neuropeptides

    No full text
    One year ago, we discovered a new family of insect RYamide neuropeptides, which has the C-terminal consensus sequence FFXXXRYamide, and which is widely occurring in most insects, including the fruitfly Drosophila melanogaster and the red flour beetle Tribolium castaneum (F. Hauser et al., J. Proteome Res. 9 (2010) 5296-5310). Here, we identify a Drosophila G-protein-coupled receptor (GPCR) coded for by gene CG5811 and its Tribolium GPCR ortholog as insect RYamide receptors. The Drosophila RYamide receptor is equally well activated (EC(50), 1Ă—10(-9)M) by the two Drosophila RYamide neuropeptides: RYamide-1 (PVFFVASRYamide) and RYamide-2 (NEHFFLGSRYamide), both contained in a preprohormone coded for by gene CG40733. The Tribolium receptor shows a somewhat higher affinity to Tribolium RYamide-2 (ADAFFLGPRYamide; EC(50), 5Ă—10(-9)M) than to Tribolium RYamide-1 (VQNLATFKTMMRYamide; EC(50), 7Ă—10(-8)M), which might be due to the fact that the last peptide does not completely follow the RYamide consensus sequence rule. There are other neuropeptides in insects that have similar C-terminal sequences (RWamide or RFamide), such as the FMRFamides, sulfakinins, myosuppressins, neuropeptides F, and the various short neuropeptides F. Amazingly, these neuropeptides show no cross-reactivity to the Tribolium RYamide receptor, while the Drosophila RYamide receptor is only very slightly activated by high concentrations (>10(-6)M) of neuropeptide F and short neuropeptide F-1, showing that the two RYamide receptors are quite specific for activation by insect RYamides, and that the sequence FFXXXRYamide is needed for effective insect RYamide receptor activation. Phylogenetic tree analyses and other amino acid sequence comparisons show that the insect RYamide receptors are not closely related to any other known insect or invertebrate/vertebrate receptors, including mammalian neuropeptide Y and insect neuropeptide F and short neuropeptide F receptors. Gene expression data published in Flybase (www.flybase.org) show that the Drosophila CG5811 gene is significantly expressed in the hindgut of adult flies, suggesting a role of insect RYamides in digestion or water reabsorption
    corecore