1,476 research outputs found

    Physical Exercise Decreases Fasting Hyperglycemia in Diabetic Mice Through AMPK Activation

    Get PDF
    Introduction: The deficiency in glucose uptake in peripheral tissues and increased hepatic gluconeogenesis are physiopathological phenomena observed in type 2 diabetes patients. Physical exercise plays an important role in the improvement of glycemic profile in diabetic patients; however, the mechanisms involved in these processes have not been fully elucidated. Objective: to assess the role of AMPK protein in the glycemic control of diabetic mice after exercise. Methods: During fasting condition, the insulin tolerance test (ITT) and Western blot technique, were combined to assess the glucose homeostasis in diabetic mice (ob/ob and db/db) after a single swimming session. Results: Fasting hyperglycemia, severe insulin resistance and deficiency in the AMPk/ACC signaling in muscle and liver observed in the diabetic mice were reversed after the exercise session. The restoration of AMPK/ACC signaling reduced the expression of the gluconeogenic enzyme, PEPCk in the liver, and increased the translocation of GLUT4 in the skeletal muscle. These data indicate that the activation of AMPK/ACC pathway induced by physical exercise is important to reduce fasting glucose levels in experimental models of type 2 diabetes. These data open new insights for determination of physical activity control on the glucose homeostasis in diabetic patients.15317918

    Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing [version 2; peer review: 2 approved]

    Get PDF
    Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work

    Effectiveness of DNA-recombinant anti-hepatitis B vaccines in blood donors: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although various studies have demonstrated efficacy of DNA-recombinant anti-hepatitis B vaccines, their effectiveness in health care settings has not been researched adequately. This gap is particularly visible for blood donors, a group of significant importance in the reduction of transfusion-transmitted hepatitis B.</p> <p>Methods</p> <p>This is a double cohort study of 1411 repeat blood donors during the period 1998–2002, involving a vaccinated and an unvaccinated cohort, with matching of the two in terms of sex, age and residence. Average follow-up was 3.17 person-years. The outcome measure was infection with hepatitis B virus (HBV), defined by testing positive on serologic markers HBsAg or anti-HBC. All blood donors were from the blood bank in Joaçaba, federal state of Santa Catarina, Brazil.</p> <p>Results</p> <p>The cohorts did not differ significantly regarding sex, age and marital status but the vaccinated cohort had higher mean number of blood donations and higher proportion of those residing in the county capital Joaçaba. Hepatitis B incidences per 1000 person-years were zero among vaccinated and 2,33 among non-vaccinated, resulting in 100% vaccine effectiveness with 95% confidence interval from 30,1% to 100%. The number of vaccinated persons necessary to avoid one HBV infection in blood donors was estimated at 429 with 95% confidence interval from 217 to 21422.</p> <p>Conclusion</p> <p>The results showed very high effectiveness of DNA-recombinant anti-HBV vaccines in blood donors. Its considerable variation in this study is likely due to the limited follow-up and the influence of confounding factors normally balanced out in efficacy clinical trials.</p

    Effects of exposure to cigarette smoke prior to pregnancy in diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the effects of cigarette smoke exposure before pregnancy on diabetic rats and their offspring development.</p> <p>Methods</p> <p>Diabetes was induced by streptozotocin and cigarette smoke exposure was conducted by mainstream smoke generated by a mechanical smoking device and delivered into a chamber. Diabetic female Wistar rats were randomly distributed in four experimental groups (n minimum = 13/group): nondiabetic (ND) and diabetic rats exposed to filtered air (D), diabetic rats exposed to cigarette smoke prior to and into the pregnancy period (DS) and diabetic rats exposed to cigarette smoke prior to pregnancy period (DSPP). At day 21 of pregnancy, rats were killed for maternal biochemical determination and reproductive outcomes.</p> <p>Results</p> <p>The association of diabetes and cigarette smoke in DSPP group caused altered glycemia at term, reduced number of implantation and live fetuses, decreased litter and maternal weight, increased pre and postimplantation loss rates, reduced triglyceride and VLDL-c concentrations, increased levels of thiol groups and MDA. Besides, these dams presented increased SOD and GSH-Px activities. However, the increased antioxidant status was not sufficient to prevent the lipid peroxidation observed in these animals.</p> <p>Conclusion</p> <p>Despite the benefits stemming from smoking interruption during the pregnancy of diabetic rats, such improvement was insufficient to avoid metabolic alterations and provide an adequate intrauterine environment for embryofetal development. Therefore, these results suggest that it is necessary to cease smoking extensive time before planning pregnancy, since stopping smoking only when pregnancy is detected may not contribute effectively to fully adequate embryofetal development.</p
    corecore