23 research outputs found

    BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.

    Get PDF
    We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases

    Single-virion sequencing of lamivudine-treated HBV populations reveal population evolution dynamics and demographic history.

    Get PDF
    BACKGROUND: Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. RESULTS: With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. CONCLUSIONS: Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history

    Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development

    Get PDF
    Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000 P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design

    Whole-genome sequencing resolves a polyclonal outbreak by extended-spectrum beta-lactam and carbapenem-resistant Klebsiella pneumoniae in a Portuguese tertiary-care hospital.

    Get PDF
    Klebsiella pneumoniae has emerged as an important nosocomial pathogen, with whole-genome sequencing (WGS) significantly improving our ability to characterize associated outbreaks. Our study sought to perform a genome-wide analysis of multiclonal K. pneumoniae isolates (n=39; 23 patients) producing extended spectrum beta-lactamases and/or carbapenemases sourced between 2011 and 2016 in a Portuguese tertiary-care hospital. All isolates showed resistance to third-generation cephalosporins and six isolates (five patients) were also carbapenem resistant. Genome-wide-based phylogenetic analysis revealed a topology representing ongoing dissemination of three main sequence-type (ST) clades (ST15, ST147 and ST307) and transmission across different wards, compatible with missing links that can take the form of undetected colonized patients. Two carbapenemase-coding genes were detected: blaKPC-3, located on a Tn4401d transposon, and blaGES-5 on a novel class 3 integron. Additionally, four genes coding for ESBLs (blaBEL-1, blaCTX-M-8, blaCTX-M-15 and blaCTX-M-32) were also detected. ESBL horizontal dissemination across five clades is highlighted by the similar genetic environments of blaCTX-M-15 gene upstream of ISEcp1 on a Tn3-like transposon. Overall, this study provides a high-resolution genome-wide perspective on the epidemiology of ESBL and carbapenemase-producing K. pneumoniae in a healthcare setting while contributing for the adoption of appropriate intervention and prevention strategies

    Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis

    Get PDF
    Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions

    Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients.

    Get PDF
    UNLABELLED: CELADEN was a randomized placebo-controlled trial of 50 patients with confirmed dengue fever to evaluate the efficacy and safety of celgosivir (A study registered at ClinicalTrials.gov, number NCT01619969). Celgosivir was given as a 400 mg loading dose and 200 mg bid (twice a day) over 5 days. Replication competent virus was measured by plaque assay and compared to reverse transcription quantitative PCR (qPCR) of viral RNA. Pharmacokinetics (PK) correlations with viremia, immunological profiling, next generation sequence (NGS) analysis and hematological data were evaluated as exploratory endpoints here to identify possible signals of pharmacological activity. Viremia by plaque assay strongly correlated with qPCR during the first four days. Immunological profiling demonstrated a qualitative shift in T helper cell profile during the course of infection. NGS analysis did not reveal any prominent signature that could be associated with drug treatment; however the phylogenetic spread of patients' isolates underlines the importance of strain variability that may potentially confound interpretation of dengue drug trials conducted during different outbreaks and in different countries. Celgosivir rapidly converted to castanospermine (Cast) with mean peak and trough concentrations of 5727 ng/mL (30.2 μM) and 430 ng/mL (2.3 μM), respectively and cleared with a half-life of 2.5 (± 0.6) hr. Mean viral log reduction between day 2 and 4 (VLR2-4) was significantly greater in secondary dengue than primary dengue (p = 0.002). VLR2-4 did not correlate with drug AUC but showed a trend of greater response with increasing Cmin. PK modeling identified dosing regimens predicted to achieve 2.4 to 4.5 times higher Cmin. than in the CELADEN trial for only 13% to 33% increase in overall dose. A small, non-statistical trend towards better outcome on platelet nadir and difference between maximum and minimum hematocrit was observed in celgosivir-treated patients with secondary dengue infection. Optimization of the dosing regimen and patient stratification may enhance the ability of a clinical trial to demonstrate celgosivir activity in treating dengue fever based on hematological endpoints. A new clinical trial with a revised dosing regimen is slated to start in 2016 (NCT02569827). Furthermore celgosivir's potential value for treatment of other flaviruses such as Zika virus should be investigated urgently. TRIAL REGISTRATION: ClinicalTrials.gov NCT01619969

    Predicted exposure for different dosing regimens.

    No full text
    <p>The Box-25th to 75<sup>th</sup> percentile, whiskers-minimum and maximum values for the various dosing regimens is shown. (A) C<sub>min</sub> range for the various dosing regimens shows that 150 mg every 6 hr is predicted to yield a 4.5-fold increase in median Cmin used in CELADEN trial (B) C<sub>max</sub>, range do not vary significantly for the various dosing regimens and (C) AUC only shows a modest 1.33-fold increase over the dosing regimen used in the CELADEN trial.</p

    Dependence of pharmacokinetic parameters on covariates.

    No full text
    <p>Body Weight (A and B); Age (C and D); Creatinine Clearance (E); and Sex (F). Clearance or volume of distribution were not significantly affected by patients’ body weight, age or sex. Drug clearance was significantly correlated with creatinine clearance, indicating a significant role of the kidneys for elimination of celgosvir. Solid line-linear regression, dashed line- 95% CI. The slope of the linear regression line of creatinine clearance versus drug clearance was 0.86 (95% CI: 0.376, 1.351).</p
    corecore