18 research outputs found

    Centrioles: active players or passengers during mitosis?

    Get PDF
    Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as “the organ for cell division”. However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues

    Programmed to stay together

    No full text

    The grapes checkpoint coordinates nuclear envelope breakdown and chromosome condensation

    No full text
    Mutations in the embryonic Drosophila Grapes/Chk1 checkpoint result in an abbreviated interphase, chromosome condensation defects and metaphase delays. To clarify the relationship between these phenotypes, we simultaneously timed multiple nuclear and cytoplasmic events in mutant grp-derived embryos. These studies support a model in which grp disrupts an S-phase checkpoint, which results in progression into metaphase with incompletely replicated chromosomes. We also show that chromosome condensation is independent of the state of DNA replication in the early embryo. Therefore, grp condensation defects are not a direct consequence of entering metaphase with incompletely replicated chromosomes. Rather, initiation of chromosome condensation (ICC) occurs at the normal time in grp-derived embryos, but the shortened interval between ICC and metaphase does not provide sufficient time to complete condensation. Our results suggest that these condensation defects, rather than incomplete DNA replication, are responsible for the extensive metaphase delays observed in grp-derived embryos. This analysis provides an example of how the loss of a checkpoint can disrupt the timing of multiple events not directly monitored by that checkpoint. These results are likely to apply to vertebrate cells and suggest new strategies for destroying checkpoint-compromised cancer cells

    Male death resulting from hybridization between subspecies of the gypsy moth, Lymantria dispar

    No full text
    We explored the origin of all-female broods resulting from male death in a Hokkaido population of Lymantria dispar through genetic crosses based on the earlier experiments done by Goldschmidt and by testing for the presence of endosymbionts that are known to cause male killing in some insect species. The mitochondrial DNA haplotypes of the all-female broods in Hokkaido were different from those of normal Hokkaido females and were the same as those widely distributed in Asia, including Tokyo (TK). Goldschmidt obtained all-female broods through backcrossing, that is, F1 females obtained by a cross between TK females (L. dispar japonica) and Hokkaido males (L. dispar praeterea) mated with Hokkaido males. He also obtained all-male broods by mating Hokkaido females with TK males. Goldschmidt inferred that female- and male-determining factors were weakest in the Hokkaido subspecies and stronger in the Honshu (TK) subspecies. According to his theory, the females of all-female broods mated with Honshu males should produce normal sex-ratio broods, whereas weaker Hokkaido sexes would be expected to disappear in F1 or F2 generations after crossing with the Honshu subspecies. We confirmed both of Goldschmidt's results: in the case of all-female broods mated with Honshu males, normal sex-ratio broods were produced, but we obtained only all-female broods in the Goldschmidt backcross and obtained an all-male brood in the F1 generation of a Hokkaido female crossed with a TK male. We found no endosymbionts in all-female broods by 4,′6-diamidino-2-phenylindole (DAPI) staining. Therefore, the all-female broods observed in L. dispar are caused by some incompatibilities between Honshu and Hokkaido subspecies
    corecore