10 research outputs found

    Experimental Hyperthyroidism Decreases Gene Expression and Serum Levels of Adipokines in Obesity

    Get PDF
    Aims. To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. Main Methods. Male Wistar rats were randomly divided into two groups: control (C)—fed with commercial chow ad libitum—and obese (OB)—fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 μg triiodothyronine (T3)/100 BW (OT). The T3 dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. Results. T3 treatment was effective, increasing fT3 levels and decreasing fT4 and TSH serum concentration. Administration of T3 promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. Conclusions. Our results suggest that T3 modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T3 and adipokines in obesity

    Thyroid hormone status interferes with estrogen target gene expression in breast cancer samples in menopausal women

    No full text
    We investigated thyroid hormone levels in menopausal BrC patients and verified the action of triiodothyronine on genes regulated by estrogen and by triiodothyronine itself in BrC tissues. We selected 15 postmenopausal BrC patients and a control group of 18 postmenopausal women without BrC. We measured serum TPO-AB, TSH, FT4, and estradiol, before and after surgery, and used immunohistochemistry to examine estrogen and progesterone receptors. BrC primary tissue cultures received the following treatments: ethanol, triiodothyronine, triiodothyronine plus 4-hydroxytamoxifen, 4-hydroxytamoxifen, estrogen, or estrogen plus 4-hydroxytamoxifen. Genes regulated by estrogen (TGFA, TGFB1, and PGR) and by triiodothyronine (TNFRSF9, BMP-6, and THRA) in vitro were evaluated. TSH levels in BrC patients did not differ from those of the control group (1.34 ± 0.60 versus 2.41 ± 1.10  μ U/mL), but FT4 levels of BrC patients were statistically higher than controls (1.78 ± 0.20 versus 0.95 ± 0.16 ng/dL). TGFA was upregulated and downregulated after estrogen and triiodothyronine treatment, respectively. Triiodothyronine increased PGR expression; however 4-hydroxytamoxifen did not block triiodothyronine action on PGR expression. 4-Hydroxytamoxifen, alone or associated with triiodothyronine, modulated gene expression of TNFRSF9, BMP-6, and THRA, similar to triiodothyronine treatment. Thus, our work highlights the importance of thyroid hormone status evaluation and its ability to interfere with estrogen target gene expression in BrC samples in menopausal women

    Triiodotironina modula a expressão de leptina e adiponectina em adipócitos 3T3-L1

    No full text
    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases.Objetivo: Examinar o efeito de diferentes doses de triiodotironina sobre a expressão gênica das adipocinas leptina e adiponectina, em diferentes períodos de tempo, além de avaliar a diferença de expressão entre as duas adipocinas em cada grupo. Métodos: Adipócitos 3T3-L1 foram incubados com triiodotironina nas doses fisiológica (10nM) e suprafisiológicas (100nM ou 1.000nM), ou na ausência de triiodotironina (controle, C) durante 0,5, 6 ou 24 horas. O mRNA das adipocinas foi analisado em tempo real, utilizando a reação em cadeia de polimerase. Para as análises dos dados, foi utilizada a análise de variância, complementada com o teste de Tukey, ou o teste t de Student com 5% de significância. Resultados: Os níveis de leptina diminuíram no grupo com dose de 1.000nM em 0,5 hora. A adiponectina também diminuiu no grupo com dose de 10nM, porém se elevou com a dose de 100nM. Após 6 horas, ambos os genes foram suprimidos em todas concentrações de hormônio. Em 24 horas, os níveis de leptina foram elevados em 10, 100 e 1.000nM, em relação ao grupo controle. No que concerne à adiponectina, observou-se aumento apenas no grupo cuja dose foi de 100nM, em comparação ao controle. Conclusão: Foram demonstradas ações rápidas da triiodotironina sobre a expressão da leptina e da adiponectina, iniciando em 0,5 hora na dose de 1.000nM, para a primeira, e na dose de 100nM, para a segunda. A triiodotironina estimulou ou inibiu a expressão de adipocinas em adipócitos em diferentes tempos e doses, o que pode auxiliar no tratamento da obesidade, levando em consideração que, nesta, a leptina está aumentada e adiponectina, diminuída.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Modulation of thyroid hormone receptors, TRα and TRβ, by using different doses of triiodothyronine (T3) at different times

    No full text
    Objective: To examine the effect of different doses of triiodothyronine (T3) on mRNA levels of thyroid hormone receptors, TRα and TRβ, at different times. Materials and methods: 3T3-L1 adipocytes were incubated with T3 (physiological dose: F; supraphysiological doses: SI or SII), or without T3 (control, C) for 0.5, 1, 6, or 24h. TRα and TRβ mRNA was detected using real-time polymerase chain reaction. Results: F increased TRβ mRNA levels at 0.5h. After 1h, TRα levels increased with F and SI and TRβ levels decreased with SII compared with C, F, and SI. After 6h, both genes were suppressed at all concentrations. In 24h, TRα and TRβ levels were similar to those of C group. Conclusions: T3 action with F began at 1h for TRα and at 0.5h for TRβ. These results suggest the importance of knowing the times and doses that activate T3 receptors in adipocytes.Objetivo: Examinar o efeito de diferentes doses de triiodotironina (T3) sobre a expressão gênica dos receptores TRα e TRβ em diferentes tempos. Materiais e métodos: Adipócitos, 3T3-L1, foram incubados com T3 nas doses fisiológica (F, 10nM) e suprafisiológicas (SI, 100nM ou SII, 1000nM) ou veículo (controle, C) durante 0,5, 1, 6 ou 24h. mRNA dos TRs foram detectados utilizando PCR em tempo real. Resultados: Níveis de TRβ aumentaram em F em 0,5h. Após 1h, níveis de TRα aumentaram em F e SI comparado ao C, enquanto TRβ diminuiu no SII comparado com C, F, e SI. Após 6h, ambos os genes foram suprimidos em todas concentrações. Em 24h, níveis de TRα e TRβ retornaram aos do C. Conclusões: Ação do T3 em F iniciou-se em 1h para TRα e 0,5h para TRβ. Esses resultados são importantes para determinar tempo inicial e dose de T3 em que os receptores de HT são ativados em adipócitos

    Graves’ ophthalmopathy: low-dose dexamethasone reduces retinoic acid receptor-alpha gene expression in orbital fibroblasts

    No full text
    ABSTRACT Objective: Graves’ ophthalmopathy (GO) is an autoimmune disease that leads to ocular proptosis caused by fat accumulation and inflammation, and the main treatment is corticosteroid therapy. Retinoid acid receptor-alpha (RARα) seems to be associated with inflammation and adipocyte differentiation. This study aimed to assess the effect of glucocorticoid treatment on orbital fibroblasts of GO patient treated or not with different glucocorticoid doses. Materials and methods: Orbital fibroblasts collected during orbital decompression of a female patient with moderately severe/severe GO were cultivated and treated with 10 nM and 100 nM dexamethasone (Dex). rRARα gene expression in the treated and untreated cells was then compared. Results: Fibroblast RARα expression was not affected by 100 nM Dex. On the other hand, RARα expression was 24% lower in cells treated with 10 nM Dex (p < 0.05). Conclusions: Orbital fibroblasts from a GO patient expressed the RARα gene, which was unaffected by higher, but decreased with lower doses of glucocorticoid

    Gene expression of estrogen receptor-alpha in orbital fibroblasts in Graves’ ophthalmopathy

    No full text
    Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibroblasts from a patient with GO before (controls) and after treatment with 10 nM and 100 nM dexamethasone (DEX). Orbital fibroblasts showed ERA gene expression. In the cells treated with 10 nM and 100 nM DEX, ERA gene expression was, respectively, 85% higher and 74% lower, than in the control group. We concluded that ERA gene expression is found in the orbital fibroblasts of patient with GO, which may be affected by glucocorticoids in a dose-related manner. Arch Endocrinol Metab. 2015;59(3):273-

    Gene expression of estrogen receptor-alpha in orbital fibroblasts in Graves’ ophthalmopathy

    No full text
    Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibroblasts from a patient with GO before (controls) and after treatment with 10 nM and 100 nM dexamethasone (DEX). Orbital fibroblasts showed ERA gene expression. In the cells treated with 10 nM and 100 nM DEX, ERA gene expression was, respectively, 85% higher and 74% lower, than in the control group. We concluded that ERA gene expression is found in the orbital fibroblasts of patient with GO, which may be affected by glucocorticoids in a dose-related manner. Arch Endocrinol Metab. 2015;59(3):273-
    corecore