4,080 research outputs found

    Temperature Measurement and Phonon Number Statistics of a Nanoelectromechanical Resonator

    Get PDF
    Measuring thermodynamic quantities can be easy or not, depending on the system that is being studied. For a macroscopic object, measuring temperatures can be as simple as measuring how much a column of mercury rises when in contact with the object. At the small scale of quantum electromechanical systems, such simple methods are not available and invariably detection processes disturb the system state. Here we propose a method for measuring the temperature on a suspended semiconductor membrane clamped at both ends. In this method, the membrane is mediating a capacitive coupling between two transmission line resonators (TLR). The first TLR has a strong dispersion, that is, its decaying rate is larger than its drive, and its role is to pump in a pulsed way the interaction between the membrane and the second TLR. By averaging the pulsed measurements of the quadrature of the second TLR we show how the temperature of the membrane can be determined. Moreover the statistical description of the state of the membrane, which is directly accessed in this approach is significantly improved by the addition of a Josephson Junction coupled to the second TLR.Comment: 9 pages, 5 figures. To appear in New Journal of Physic

    Superfluid and Fermi liquid phases of Bose-Fermi mixtures in optical lattices

    Full text link
    We describe interacting mixtures of ultracold bosonic and fermionic atoms in harmonically confined optical lattices. For a suitable choice of parameters we study the emergence of superfluid and Fermi liquid (non-insulating) regions out of Bose-Mott and Fermi-band insulators, due to finite Boson and Fermion hopping. We obtain the shell structure for the system and show that angular momentum can be transferred to the non-insulating regions from Laguerre-Gaussian beams, which combined with Bragg spectroscopy can reveal all superfluid and Fermi liquid shells.Comment: 4 pages, 2 figure

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    Capacitive Coupling of Two Transmission Line Resonators Mediated by the Phonon Number of a Nanoelectromechanical Oscillator

    Full text link
    Detection of quantum features in mechanical systems at the nanoscale constitutes a challenging task, given the weak interaction with other elements and the available technics. Here we describe how the interaction between two monomodal transmission-line resonators (TLRs) mediated by vibrations of a nano-electromechanical oscillator can be described. This scheme is then employed for quantum non-demolition detection of the number of phonons in the nano-electromechanical oscillator through a direct current measurement in the output of one of the TLRs. For that to be possible an undepleted field inside one of the TLR works as a amplifier for the interaction between the mechanical resonator and the remaining TLR. We also show how how the non-classical nature of this system can be used for generation of tripartite entanglement and conditioned mechanical coherent superposition states, which may be further explored for detection processes.Comment: 6 pages, 5 figure

    Dinâmica recente no espaço rural do município de Nossa Senhora da Glória/SE.

    Get PDF
    O objetivo desse artigo é analisar a dinâmica recente no espaço rural de um município do semi-árido sergipano, reconhecido pelo dinamismo da sua economia que gira em torno da produção e processamento do leite por agricultores familiares, a despeito da inexistência de políticas específicas e continuadas para esse fim. A área de pesquisa é o município de Nossa Senhora da Glória localizado no Alto Sertão sergipano. A metodologia privilegiou o contato com atores-chave através de entrevistas, observações de campo, caminhadas transversais para observação da paisagem, participação em reuniões e levantamento de dados secundários. Os principais resultados demonstram que o município de Glória contem na sua totalidade três unidades de desenvolvimento com dinâmicas particulares a depender das estratégias dos agricultores, acesso e qualidade dos recursos naturais e vinculação com os mercados (trabalho, produto e financeiro

    BCS-BEC crossover of collective excitations in two-band superfluids

    Full text link
    We use the functional integral approach to study low energy collective excitations in a continuum model of neutral two-band superfluids at T=0 for all couplings with a separable pairing interaction. In the long wavelength and low frequency limit, we recover Leggett's analytical results in weak coupling (BCS) for s-wave pairing, and further obtain analytical results in strong coupling (BEC) for both two and three dimensional systems. We also analyse numerically the behavior of the out-of-phase {\it exciton} (finite frequency) mode and the in-phase {\it phonon} (Goldstone) mode from weak to strong coupling limits, including the crossover region. In principle, the evolution of Goldstone and finite frequency modes from weak to strong coupling may be accessible experimentally in the superfluid phase of neutral Fermi atomic gases, and could serve as a test of the validity of the theoretical analysis and approximations proposed here.Comment: 14 pages, 9 figures. Submitted to PR

    Two-band superfluidity from the BCS to the BEC limit

    Full text link
    We analyze the evolution of two-band superfluidity from the weak coupling Bardeen-Cooper-Schrieffer (BCS) to the strong coupling Bose-Einstein condensation (BEC) limit. When the interband interaction is tuned from negative to positive values, a quantum phase transition occurs from a 0-phase to a π\pi-phase state, depending on the relative phase of two order parameters. Furthermore, population imbalances between the two bands can be created by tuning the intraband or interband interactions. We also find two undamped low energy collective excitations corresponding to in-phase and out-of-phase modes. Lastly, we derive the coupled Ginzburg-Landau equations, and show that they reduce to coupled Gross-Pitaevskii equations for two types of bosons in the BEC limit.Comment: 4 pages and 3 figure
    corecore