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Abstract

Measuring thermodynamic quantities can be easy or not, depending on the system that is being
studied. For a macroscopic object, measuring temperatures can be as simple as measuring how much a
column of mercury rises when in contact with the object. At the small scale of quantum
electromechanical systems, such simple methods are not available and invariably detection processes
disturb the system state. Here we propose a method for measuring the temperature on a suspended
semiconductor membrane clamped at both ends. In this method, the membrane is mediating a
capacitive coupling between two transmission line resonators (TLR). The first TLR has a strong
dispersion, that is, its decaying rate is larger than its drive, and its role is to pump in a pulsed way the
interaction between the membrane and the second TLR. By averaging the pulsed measurements of the
quadrature of the second TLR we show how the temperature of the membrane can be determined.
Moreover the statistical description of the state of the membrane, which is directly accessed in

this approach is significantly improved by the addition of a Josephson junction coupled to the

second TLR.

1. Introduction

Electromechanical systems are devices which couple mechanical displacement and electrostatic interactions.
Measuring physical properties of such a device at macroscopic scales is relatively easy—Coulomb in his famous
torsion balance attached charged metal spheres to rods and threads and visually measured the torsion produced
by the electrostatic interaction between the spheres. The measurement of the torsion allowed him to determine
the force acting on the spheres [1, 2]. At the nanoscale however [3], the movement of a nanoelectromechanical
system (NEMS) cannot be observed directly. A further complication is that at those scales a quantum description
of the system is invariably necessary.

The specific NEMS we are interested in is a suspended semiconductor membrane clamped at both ends,
which will be oscillating due to coupling to the thermal modes of the clamps. The smaller is the mechanical
element of the NEMS, the stronger is the coupling to the thermal modes of the reservoirs that clamp them at the
extremities, and usually some enginnered structures must be employed in order to decrease its effects [4]. This
oscillator can be coupled electrostatically to other devices, allowing the transduction of the movement as electric
signals (see [5] for a general review). Previously schemes to measure the quadrature phase amplitude [6] and to
observe the quantum of thermal conductance [7] have been proposed. It is particularly relevant that the
detection of the NEMS movement can give direct access to its temperature, a fundamental physical quantity
[8,9]. For the NEMS temperature measurement, usually the area under the noise power spectrum of the
displacement amplitude transduced signal is used as it gives directly the mean phonon number in the steady state
(see [4, 10] for example). However, one could ask on how to access the temperature of the mechanical resonator
by means of a non-demolition detection scheme. Indeed, some previous discussion on non-demolition
detection in the accessment of temperature has been given [11, 12]. Also a discussion on back-action-evading

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Diagram for a pulsed quantum nondemolition measurement. The drive ‘D’ pulses the interaction between the system ‘S’ and
the measuring device ‘M’. The noise reducer ‘NR’ lowers the fluctuations of the meter in each measurement. This cycle, is repeated
many times, always following the order: state preparation — coherent control — quantum measurement.

detection and squeezing generation in mechanical resonators through coupling to radiation field were given in
[13] as well as the outstanding implementation for movement detection given in [14].

In this work we describe a circuit in which we can perform repeated quantum nondemolition measurement
sof the expected value of the number of phonons of the NEMS, and show an analysis of the statistics of the
number of phonons in this circuit. Through this analysis we show how the temperature of the semiconductor
membrane can be directly accessed. Finally, we show that by discretizing the measurement of the expected value
we can increase its accuracy in a pulsed linear radiation detection process [15, 16].

In order to perform a measurement on a small oscillator, in a quantum regime [1, 2, 14, 17], a quantum
nondemolition measurement is necessary. In this type of measurement, the coupling with the meter is such that
it does not disturbs the non-demolition observable of interest. Also, because these measurements are
probabilistic by nature, it is also important to improve the precision of the meter so that at the end of many
measurements there is a significant accuracy in the calculated average. This cyclic sequence of non continuous
measurements in time is shown on the diagram of figure 1.

2. Results

We consider the coupling of two transmission line resonators (TLRs) mediated by a mechanical resonator as
considered in [18] and represented in figure 2. By assuming the regime of rapid mechanical oscillations at the
GHz scale, and that the TLR-1, being in a undepleted regime, is treated classically, the interaction Hamiltonian
between the NEMS and the field in the TLR-2 is given by

H = —fza(t)bTb(a + aT), (1)

where /(1) is proportional to the microwave amplitude in the TLR-1[18] and a(a") is the annihilation
(creation) operator of the normal mode in the TLR-2. b(b") is the mechanical resonator annihilation
(creation) operator. As one can see in this interaction Hamiltonian the phonon number operator b'b is a
nondemolition variable. In addition the field in this remaining TLR is affected by the presence of a
Josephson junction (see figure 2), whose effect (as demonstrated in the appendix) is to induce quadrature

2
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Figure 2. In the proposed experiment, the capacitive coupling between two TLRs is mediated by the vibration of a NEMS. The TLR-2,
on the right is directly coupled with a Josephson junction (J]) for noise reduction. The pulsed measurement sequence is given as
follows: (a) step one. Initial state preparation p (0); (b) step two. Application of a pulse in TLR-2 by a coherent pulse source of
generating p (# ); (c) step three. Application of a pulse in TLR-1 by another coherent pulse source generating p (7); (d) step four. The
output of the TLR-2 is directed to a microwave beam splitter (a hybrid). The two outputs are then amplified and run through separate
IQ mixers. The four output currents from two IQ mixers can be correlated in various ways. The particlar correlation employed here
gives access directly to all the normally ordered moments of the cavity field at the start of the measurement. The cross correlations are
computed after all the field has been detected and the TLR-2 returned to the vacuum state ready for the next pulse. (Note: the pulse
applied in step 3 does not interact with the JJ, for not producing sufficiently large charging energy.)
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squeezing [19-25] through a parametric term
H, = —i/i%(az - a”). 2)

Without loss of generality we take v = 3x?/2 asbeing real and positive, where x® is the nonlinear
susceptibility and (is the amplitude the coherent pulse source in the TLR-2. We shall consider a pulsed
measurement scenario [ 15, 16] where the interaction in H;is turned on and off rapidly. Note that the
unconditional phonon number operator is a quantum non-demolition variable. Moreover given that

[b'b, H, + H;] = 0, back-action evading is guaranteed and therefore b'b can be repeteadly measured without
the back-action noise [26]. Therefore the phonon number statistics is not changed from pulse to pulse. The
detailed process of this pulsed measurement is described in what follows. For a detailed description of the
elements involved forlinear detection please see [15, 16].

The experiment is carried out according to figure 2. The Josephson junction acts as a source of coherent
pulses, with time interval ¢;, on the TLR-2 In sequence, a coherent pulse is applied to TLR-1, with amplitude a4
and time interval t,. The radiation field there is treated classically, as a result of the undepleted regime [18]. After
these pulses, the density operator is given by

p(T S tz) — e—itits/ % efiHPtl//‘zp(o)eintl/izfeiHItz//z' (3)

Initially, the TLR-2 is prepared in a vacuum state, while the NEMS, which oscillates due to thermal excitation, in
equilibrium is in a thermal state with mean phonon number N,

p(0) = S P(m)[n) (nly @ 10)(0],, @
n=0

where P(n) = N"/(N + 1)**!is the thermal phonon number distribution in the NEMS, being
N = (exp(/w/kgT) — 1)~!its thermal number. Given the very shorts pulses with time intervals 7 = # + £,
the evolution can be approximated as above to give

p(r) = Zp(n)|n><n|b ® |, 'Y> <an) Y las (5

n=0
5}
with a,(7) = in f a(tr)dt = i nA, where A is the area of the interaction pulse, and | v, 7y), is a coherent
0

squeezed state given by |av,,, 7). = D(a,)S(y)|n, 0), where D(a,,) = exp [inA (a + a')]is the displacement
operator conditioned on the mechanical resonator phonon excitation number and
S(y) = exp[(7/2)(a™ — a?)]is the squeezing operator.

At the end of a pulse the reduced cavity field state is described by a mixture of squeezed coherent states,
which are distributed according to the mechanical resonator thermal phonon number distribution P(#). The
field in TLR-2 is dumped out through the dual IQ mixer measurement scheme of [15, 16], detailed in figure 2. In
this scheme, the TLR-2 output is directed to a microwave beam splitter (a hybrid coupler). The two outputs are
then amplified and run through separate IQ mixers. The four output currents from the IQ mixers can be
correlated in various ways after proceeding to linear detectors [15]. One particular cross correlation gives access
directly to all the normally ordered moments of the TLR-2 field at the initial time of the measurement. At the end
of each pulse a measurement is performed on the output of the second TLR through complexes envelopes
S. = —a(r)and S; = ia (7). Itisimportant to remark that the criterion for back-action-evasion for b'b, mainly
[b'b, H, + H;] = 0,is obeyed in every detection step.

These pulsed measurements allow that the cross-correlations be computed after all the field has been
detected and the TLR-2 returned to the vacuum state ready for the next pulse. For each individual pulsed
measurement the NEMS is to be found on an specific phonon number excitation m according to the thermal
distribution P(m). The post-selected state of the TLR-2 field conditioned on this instantaneous (at the time of
measurement 7) NEMS excitation m is given by

Try { ILnp () 1L,
() = { }, ©®)
Trgp { Tp (1L }

where IT,,, = |m) (m|,, p (7) is given by equation (5), and T, {II,,0 (7)I1,,} = P (m) is the probability to
obtain m. Therefore the expected value of the phase quadrature in each measurement

(Y)om (1) = <am, 7‘ Y |am, 7>, ™)
has a variance

(@are) (@ =em ®)
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Figure 3. Phase space of the TLR-2in t = 7 for vy > —In[+/2A ]. The minor (major) axis of the ellipses represent
((AY)2) (1) = e=2" (((AX)?) (1) = e21"), the variance of each measurement of the quadrature Y (X). The separation of the
ellipses along Yis equal to pulse the interaction area 2A.

The TLR-2 field pre-selected state p, (1) = Zm P(m) pfz’") (1) average over all the quadrature measurements as
(Y)(r) = Zm P (m) (Y )(m) (7) providing the phonon number (and consequently the temperature) measurement.

The computation of the total variance on Y depends on the variance of the thermal NEMS by adding the
variance of each individual measurement, and is dependent on the distinguishability of each individual
detection. The squeezing enables the disjunction of the individual conditioned TLR-2 field detections, allowing
to attribute the correct excitation m influencing p;m) (1), as depicted in the phase space in figure 3. Therefore the
squeezing improves the statistical resolution, being necessary that v > —In[~/2A ] for that to be ensured. The
ellipses are centered at n2A, n = 0, 1, 2, ..., and their minor and major axes represent the fluctuation of the
measurement of each quadrature. Without the squeezing an incorrect attribution could be given to m through
the fluctuation ((AY)Z)(m) (1) = e 24,

The resulting average over many pulsed measurements is given by the quadratures

(Y)(r) = Tr {i(aT - a)p(T)} — 2AN 9)
and
(X)(r) = Tr { (a+ aT)p(T)} —0. (10)

Therefore, by averaging over many identical pulses we can reconstruct the mean phonon number of the NEMS,
N, and thus deduce its temperature, T = 7/ /[kz In(N~! + 1)].In a similar fashion we could also measure two-
time correlation functions for the mechanical resonator. Instead here we focus on the quadratures variance and
the increasing of accuracy in determining the phonon statistics of the mechanical resonator due to the presence
of the squeezing term in equation (2).

Through the pulsed measurement the variance of the quadrature Yis given by

((AN?) = 4NN + 1) + ((AV)?) (), (1)

being ((AY)Z)(m) (1), the variance of each individual measurement given by equation (8). N (N + 1) appearing
in equation (11) is the variance of the thermal distribution of the NEMS. The squeezing induced by the
Josephson junction allows a reduction of the noise on each measurement, in contrast with the situation without
the Josephson junction, for which {((AY)?) (m (7) = 1.Inthelimit of large squeezing the relative uncertainty

AY = | ((AY)?) /(Y)isapproximately given by

AY ~ 1 + N1, (12)

being independent on the pulse area and reapidly reaching the threshold 1 with increasing N.
Extending the previous procedure for measurement of the TLR-2 field ordered moments we can reconstruct
the Wigner quasiprobability distribution [27, 28]

< (af)nam> (_)\*)m)\n e HIAPHaX—a*)

mnlm! (13)

W) =3 [@
for the field state, giving

—2yt1_ 1 2 oyt
W(a) = ZPZ(;l) ef% Re2(a)e 2 17§[Im(a)fa,,] e 1' (14)

n
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Figure 4. (a) Wignerdistibution for the TLR-2 field, as given in equation (14) for N=1,A = 1and e*"! = 50. Integrating the Wigner
distribution with respect to variable Re(«), P = f dRe () W(«v), we obtain the visualization of the NEMS thermal phonon
distribuiton P(n) depicted [29] in the histogram (b).

The signature of the NEMS phonon distribution P(n) is clearly imprinted in the Wigner distribution profile in
figure 4 and can accessed through the marginal distibution P = f dRe(a) W(a).

3. Discussion

Detection of thermodynamical quantities associated to nanoscopic movement is important in many aspects.
Particularly, the detection of the corresponding temperature of such tiny devices is relevant for physical
characterization [8, 9] and latter usage in further applications. Here we have proposed a mechanism to measure
the average number of phonons of a NEMS through a pulsed non-demolition detection scheme. Since here the
NEMS phonons are due to thermal excitation, a direct way to characterize the temperature of the device as well
as it statistical properties in a non-demolition way is derived. The proposed scheme to measure the temperature
of the NEMS is experimentally feasible with nowadays technology. The interaction between semiconducting
NEMS[1,2,7,17,30, 31] and superconducting TLR [32—34] has already been carried out [6, 35-38].
Experiments with The IQ mixer measuring method were also performed [16]. Therefore we expect that the
presented scheme be readily implemented. The mechanical resonator is assumed to be at thermal equilibrium at
the measurement stage, and therefore dissipative effects, which are strong for those devices play a key role for
reaching this equilibrium. That is to be reached prior the sequence of pulses of the detection scheme, otherwise it
would be expected a continuous decrease of the phonon number, which would be typical in a transient regime.
The more relevant dissipative effect comes in fact from the superconducting charge qubit decayng time [39] (see
[5] for a compreensive review of some recent experimental numbers). At the frequencies of GHz necessary for
the present porposal the charge qubit decay will affect the squeezing of the TLR 2 field, and therefore will affect
the accuracy of the detection process. However given the ability to perform short and fast pulses in those devices
[15] we do not expect it to be detrimental for the present proposal. A more detailed investigation on that is
required.
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Figure Al. (a) Scheme for generation of a parametric oscillator, via the pulse applied to the TLR-2, coupled to an artificial three-level
atom; (b) energy-level diagram, observing the Hamiltonian (A.2), (A.3)and A = —(; — Q, — Q) = Q, — Q; — Q, (with
Q=-w, QL =wandQ; = —wj)and Q3 = Q, — Q, — 6.
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Appendix. Derivation of Hamiltonian (2)

We consider the model in figure A1, where the three lowest Josephson junction charge states form a three-level
artificial atom is in a configuration where the ground (|g)) and excited (|e)) states are separated by an
intermediary atomic level (|i)). The modes with frequency €2, €2, and €25 are coupled to the transitions
|g) < 1i),]i) < |e)and|g) < |e) with coupling constants g;, g, and g3, respectively.

The Hamiltonian in the rotating wave approximation is

H=Hy,+V, (A1)
being
3
H, = ﬁz Qja;faj + 7000 + 71805 + /i Qg0 (A.2)
j=1
and
V=17 (glafo,'g + £a3 0 + g3 0 + h. c.), (A.3)

where oj = |j) (k|is the atomic transition for j, k = g, i, e. Writing H in the interaction picture, by applying

Up(t) = e~iHot/% and transforming it through U, = e~14*(%+%), we obtain

7
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% =— A(Uee + Jgg)
+ g M0g + &0 + 30,
+ gl*afa,-g + g;‘agaei + g;ka;aeg. (A.4)
Therefore, the Heisenberg equations of motion for the coherences o; and o;, are
i = — Aoy + ga1(0i — 0g) + &30 — &' a3 Oy (A.5)
and
i = — Aoy + g a3 (05 — 0w) + g a3 0jg — § A1 O (A.6)

Assuming that initially the artificail atom is prepared in the state |i) and that both A and § and large enough so
that the states |e) and |¢) are not significantly populated so that 0;; = 1, in the limit where
A > gl g5 1!, 6, wehave the adiabatic solution with &;, = &, = 0. Next, the expression of o; and o, we

can consider A? — g32 a; as =~ /2, the terms with Ogg> Oees Oge aNd g CAN be neglected, resulting in the solution

*
~ gl g2 g3 T
Oig = Zﬂl + A2 a, as (A.7)
and
* *
~ & ., 8& +
Oje = Kﬁlz + F&h&%. (AS)

In this way, preparing the artificial atom in intermediate state |i), and replacing (A.7) and (A.8) expressions in
Hamiltonian (A.4), we obtain the effective Hamiltonian of the form

~ 2 *

Her & 4 & 818285 818,85

— = —a,aq + ——a,d; + ——

2 AT T AT N
being ¢, and g, real. Now;, applying the transformation U, = emit(glalatgaln)/A g, — i3 beinga
coherent pulse source ofamplitude 8,and g, — Gse~'*' so thatiits frequency is adjusted to § = (312 + gz2 ) / A,
we obtain

alaza; +

a, ajas, (A9)

H, = —iﬁ%(az ~ a?), (A.10)

withay = a, = a, ) = Q, = w, v = 4g¢, G533/ Note that in this case, the effective frequency is satisfied
for Q3 = 2w — (gl2 + gzz)/A.
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