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Abstract
Measuring thermodynamic quantities can be easy or not, depending on the system that is being
studied. For amacroscopic object,measuring temperatures can be as simple asmeasuring howmuch a
columnofmercury rises when in contact with the object. At the small scale of quantum
electromechanical systems, such simplemethods are not available and invariably detection processes
disturb the system state. Herewe propose amethod formeasuring the temperature on a suspended
semiconductormembrane clamped at both ends. In thismethod, themembrane ismediating a
capacitive coupling between two transmission line resonators (TLR). Thefirst TLRhas a strong
dispersion, that is, its decaying rate is larger than its drive, and its role is to pump in a pulsedway the
interaction between themembrane and the secondTLR. By averaging the pulsedmeasurements of the
quadrature of the secondTLRwe showhow the temperature of themembrane can be determined.
Moreover the statistical description of the state of themembrane, which is directly accessed in
this approach is significantly improved by the addition of a Josephson junction coupled to the
secondTLR.

1. Introduction

Electromechanical systems are devices which couplemechanical displacement and electrostatic interactions.
Measuring physical properties of such a device atmacroscopic scales is relatively easy—Coulomb in his famous
torsion balance attached chargedmetal spheres to rods and threads and visuallymeasured the torsion produced
by the electrostatic interaction between the spheres. Themeasurement of the torsion allowed him to determine
the force acting on the spheres [1, 2]. At the nanoscale however [3], themovement of a nanoelectromechanical
system (NEMS) cannot be observed directly. A further complication is that at those scales a quantumdescription
of the system is invariably necessary.

The specificNEMSwe are interested in is a suspended semiconductormembrane clamped at both ends,
whichwill be oscillating due to coupling to the thermalmodes of the clamps. The smaller is themechanical
element of theNEMS, the stronger is the coupling to the thermalmodes of the reservoirs that clamp them at the
extremities, and usually some enginnered structuresmust be employed in order to decrease its effects [4]. This
oscillator can be coupled electrostatically to other devices, allowing the transduction of themovement as electric
signals (see [5] for a general review). Previously schemes tomeasure the quadrature phase amplitude [6] and to
observe the quantumof thermal conductance [7] have been proposed. It is particularly relevant that the
detection of theNEMSmovement can give direct access to its temperature, a fundamental physical quantity
[8, 9]. For theNEMS temperaturemeasurement, usually the area under the noise power spectrumof the
displacement amplitude transduced signal is used as it gives directly themean phononnumber in the steady state
(see [4, 10] for example). However, one could ask on how to access the temperature of themechanical resonator
bymeans of a non-demolition detection scheme. Indeed, some previous discussion on non-demolition
detection in the accessment of temperature has been given [11, 12]. Also a discussion on back-action-evading
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detection and squeezing generation inmechanical resonators through coupling to radiationfieldwere given in
[13] aswell as the outstanding implementation formovement detection given in [14].

In this workwe describe a circuit inwhichwe can perform repeated quantumnondemolitionmeasurement
sof the expected value of the number of phonons of theNEMS, and show an analysis of the statistics of the
number of phonons in this circuit. Through this analysis we showhow the temperature of the semiconductor
membrane can be directly accessed. Finally, we show that by discretizing themeasurement of the expected value
we can increase its accuracy in a pulsed linear radiation detection process [15, 16].

In order to perform ameasurement on a small oscillator, in a quantum regime [1, 2, 14, 17], a quantum
nondemolitionmeasurement is necessary. In this type ofmeasurement, the couplingwith themeter is such that
it does not disturbs the non-demolition observable of interest. Also, because thesemeasurements are
probabilistic by nature, it is also important to improve the precision of themeter so that at the end ofmany
measurements there is a significant accuracy in the calculated average. This cyclic sequence of non continuous
measurements in time is shown on the diagramoffigure 1.

2. Results

Weconsider the coupling of two transmission line resonators (TLRs)mediated by amechanical resonator as
considered in [18] and represented infigure 2. By assuming the regime of rapidmechanical oscillations at the
GHz scale, and that the TLR-1, being in a undepleted regime, is treated classically, the interactionHamiltonian
between theNEMS and the field in the TLR-2 is given by

H t b b a a , 1I ( )( ) ( )† †a= - +

where t( )a is proportional to themicrowave amplitude in the TLR-1 [18] and a (a†) is the annihilation
(creation) operator of the normalmode in the TLR-2. b (b†) is themechanical resonator annihilation
(creation) operator. As one can see in this interactionHamiltonian the phonon number operator b b† is a
nondemolition variable. In addition thefield in this remaining TLR is affected by the presence of a
Josephson junction (see figure 2), whose effect (as demonstrated in the appendix) is to induce quadrature

Figure 1.Diagram for a pulsed quantumnondemolitionmeasurement. The drive ‘D’ pulses the interaction between the system ‘S’ and
themeasuring device ‘M’. The noise reducer ‘NR’ lowers thefluctuations of themeter in eachmeasurement. This cycle, is repeated
many times, always following the order: state preparation coherent control quantummeasurement.
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Figure 2. In the proposed experiment, the capacitive coupling between twoTLRs ismediated by the vibration of aNEMS. The TLR-2,
on the right is directly coupledwith a Josephson junction (JJ) for noise reduction. The pulsedmeasurement sequence is given as
follows: (a) step one. Initial state preparation 0( )r ; (b) step two.Application of a pulse in TLR-2 by a coherent pulse source of
generating t1( )r ; (c) step three.Application of a pulse in TLR-1 by another coherent pulse source generating ;( )r t (d) step four. The
output of the TLR-2 is directed to amicrowave beam splitter (a hybrid). The two outputs are then amplified and run through separate
IQmixers. The four output currents from two IQmixers can be correlated in various ways. The particlar correlation employed here
gives access directly to all the normally orderedmoments of the cavity field at the start of themeasurement. The cross correlations are
computed after all thefield has been detected and the TLR-2 returned to the vacuum state ready for the next pulse. (Note: the pulse
applied in step 3 does not interact with the JJ, for not producing sufficiently large charging energy.)
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squeezing [19–25] through a parametric term

H a ai
2

. 2p
2 2( ) ( )† g= - -

Without loss of generality we take 22( )g bc= as being real and positive, where 2( )c is the nonlinear
susceptibility andβ is the amplitude the coherent pulse source in the TLR-2.We shall consider a pulsed
measurement scenario [15, 16]where the interaction inHI is turned on and off rapidly. Note that the
unconditional phonon number operator is a quantumnon-demolition variable.Moreover given that
b b H H, 0p I[ ]† + = , back-action evading is guaranteed and therefore b b† can be repeteadlymeasuredwithout
the back-action noise [26]. Therefore the phonon number statistics is not changed frompulse to pulse. The
detailed process of this pulsedmeasurement is described inwhat follows. For a detailed description of the
elements involved forlinear detection please see [15, 16].

The experiment is carried out according tofigure 2. The Josephson junction acts as a source of coherent
pulses, with time interval t1, on the TLR-2 In sequence, a coherent pulse is applied to TLR-1, with amplitude 1a
and time interval t2. The radiationfield there is treated classically, as a result of the undepleted regime [18]. After
these pulses, the density operator is given by

t t e e 0 e e . 3H t H t H t H t
1 2

i i i iI p p I2 1 1 2( ) ( ) ( )   r t r= + = - -/ / / /

Initially, the TLR-2 is prepared in a vacuum state, while theNEMS,which oscillates due to thermal excitation, in
equilibrium is in a thermal state withmean phonon numberN,

P n n n0 0 0 , 4
n

b a
0

( ) ( )∣ ∣ ∣ ∣ ( )år = ñá Ä ñá
=

¥

where P n N N 1n n 1( ) ( )= + + is the thermal phonon number distribution in theNEMS, being
N k Texp 1B

1( ( ) )n= - - its thermal number. Given the very shorts pulses with time intervals t t1 2t = + ,
the evolution can be approximated as above to give

P n n n , , , 5
n

b n n a
0

( ) ( )∣ ∣ ∣ ∣ ( )år t a g a g= ñá Ä ñá
=

¥

with n t t nAi d in

t

0

2

( ) ( )òa t a= º , whereA is the area of the interaction pulse, and ,n aa g is a coherent

squeezed state given by n, , 0n a n( ) ( )∣ a g a g= ñ, where nA a aexp in( ) [ ( )]† a = + is the displacement
operator conditioned on themechanical resonator phonon excitation number and

t a aexp 21
2 2( ) [( )( )]† g g= - is the squeezing operator.

At the end of a pulse the reduced cavityfield state is described by amixture of squeezed coherent states,
which are distributed according to themechanical resonator thermal phonon number distribution P(n). The
field in TLR-2 is dumped out through the dual IQmixermeasurement scheme of [15, 16], detailed infigure 2. In
this scheme, the TLR-2 output is directed to amicrowave beam splitter (a hybrid coupler). The two outputs are
then amplified and run through separate IQmixers. The four output currents from the IQmixers can be
correlated in variousways after proceeding to linear detectors [15]. One particular cross correlation gives access
directly to all the normally orderedmoments of the TLR-2field at the initial time of themeasurement. At the end
of each pulse ameasurement is performed on the output of the secondTLR through complexes envelopes
S ac ( )t= - and S aid ( )t= . It is important to remark that the criterion for back-action-evasion for b b† , mainly
b b H H, 0p I[ ]† + = , is obeyed in every detection step.

These pulsedmeasurements allow that the cross-correlations be computed after all the field has been
detected and the TLR-2 returned to the vacuum state ready for the next pulse. For each individual pulsed
measurement theNEMS is to be found on an specific phononnumber excitationm according to the thermal
distribution P(m). The post-selected state of the TLR-2field conditioned on this instantaneous (at the time of
measurement τ)NEMS excitationm is given by

Tr

Tr
, 6a

m b m m

ab m m

{ }
{ }( )

( )

( )
( )( )r t

r t

r t
=

P P

P P

where m mm b∣ ∣P = ñá , ( )r t is given by equation (5), and P mTrab m m{ ( ) } ( )r tP P = is the probability to
obtainm. Therefore the expected value of the phase quadrature in eachmeasurement

Y Y, , , 7m m m( ) ( )( ) t a g a gá ñ =

has a variance

Y e . 8
m

t2 2 1( ) ( ) ( )
( )

tD = g-
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TheTLR-2field pre-selected state P ma m a
m( ) ( ) ( )( )år t r t= average over all the quadraturemeasurements as

Y P m Y
m m( ) ( ) ( )( )åt tá ñ = á ñ providing thephononnumber (and consequently the temperature)measurement.

The computation of the total variance onY depends on the variance of the thermalNEMSby adding the
variance of each individualmeasurement, and is dependent on the distinguishability of each individual
detection. The squeezing enables the disjunction of the individual conditioned TLR-2 field detections, allowing
to attribute the correct excitationm influencing a

m ( )( )r t , as depicted in the phase space infigure 3. Therefore the

squeezing improves the statistical resolution, being necessary that t Aln 21 [ ]g > - for that to be ensured. The
ellipses are centered at n A2 , n 0, 1, 2,= ¼ , and theirminor andmajor axes represent thefluctuation of the
measurement of each quadrature.Without the squeezing an incorrect attribution could be given tom through
thefluctuation Y em

t2 2 1( ) ( )( ) tD = g- .
The resulting average overmany pulsedmeasurements is given by the quadratures

Y a a ANTr i 2 9{ }( )( ) ( ) ( )†t r tá ñ = - =

and

X a aTr 0. 10{ }( )( ) ( ) ( )†t r tá ñ = + =

Therefore, by averaging overmany identical pulses we can reconstruct themean phonon number of theNEMS,
N, and thus deduce its temperature,T k Nln 1B

1[ ( )]n= +- . In a similar fashionwe could alsomeasure two-
time correlation functions for themechanical resonator. Instead herewe focus on the quadratures variance and
the increasing of accuracy in determining the phonon statistics of themechanical resonator due to the presence
of the squeezing term in equation (2).

Through the pulsedmeasurement the variance of the quadratureY is given by

Y A N N Y4 1 , 11
m

2 2 2( ) ( ) ( ) ( ) ( )
( )

tD = + + D

being Y m
2( ) ( )( ) tD , the variance of each individualmeasurement given by equation (8). N N 1( )+ appearing

in equation (11) is the variance of the thermal distribution of theNEMS. The squeezing induced by the
Josephson junction allows a reduction of the noise on eachmeasurement, in contrast with the situationwithout
the Josephson junction, for which Y 1m

2( ) ( )( ) tD = . In the limit of large squeezing the relative uncertainty

Y Y Y2( )D º D á ñ
~

is approximately given by

Y N1 , 121 ( )D » +
~ -

being independent on the pulse area and reapidly reaching the threshold 1with increasingN.
Extending the previous procedure formeasurement of the TLR-2field orderedmoments we can reconstruct

theWigner quasiprobability distribution [27, 28]

a a

n m
d e , 13

m n

n m m n

,

2
2

1
2

2( ) (
( )

)

! !
( )

†
∣ ∣

*
* * òåa l

l l

p
=

-
l al a l- + -

for thefield state, giving

P n

2
e . 14

n

Re e 1
2

Im et
n

t1
2

2 2 1
2 2 1( ) ( ) ( )( ) ( )⎡⎣ ⎤⎦ åa

p
= a a a- - -g g-

Figure 3.Phase space of the TLR-2 in t t= for t Aln 21 [ ]g > - . Theminor (major) axis of the ellipses represent
Y em t2 2 1( ) ( )( ) tD = g- ( X em t2 2 1( ) ( )( ) tD = g ), the variance of eachmeasurement of the quadratureY (X). The separation of the

ellipses alongY is equal to pulse the interaction area A2 .
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The signature of theNEMSphonon distribution P(n) is clearly imprinted in theWigner distribution profile in
figure 4 and can accessed through themarginal distibution dRe( ) ( ) ò a a= .

3.Discussion

Detection of thermodynamical quantities associated to nanoscopicmovement is important inmany aspects.
Particularly, the detection of the corresponding temperature of such tiny devices is relevant for physical
characterization [8, 9] and latter usage in further applications. Here we have proposed amechanism tomeasure
the average number of phonons of aNEMS through a pulsed non-demolition detection scheme. Since here the
NEMSphonons are due to thermal excitation, a direct way to characterize the temperature of the device as well
as it statistical properties in a non-demolitionway is derived. The proposed scheme tomeasure the temperature
of theNEMS is experimentally feasible with nowadays technology. The interaction between semiconducting
NEMS [1, 2, 7, 17, 30, 31] and superconducting TLR [32–34] has already been carried out [6, 35–38].
Experiments with The IQmixermeasuringmethodwere also performed [16]. Therefore we expect that the
presented scheme be readily implemented. Themechanical resonator is assumed to be at thermal equilibrium at
themeasurement stage, and therefore dissipative effects, which are strong for those devices play a key role for
reaching this equilibrium. That is to be reached prior the sequence of pulses of the detection scheme, otherwise it
would be expected a continuous decrease of the phononnumber, whichwould be typical in a transient regime.
Themore relevant dissipative effect comes in fact from the superconducting charge qubit decayng time [39] (see
[5] for a compreensive review of some recent experimental numbers). At the frequencies of GHz necessary for
the present porposal the charge qubit decaywill affect the squeezing of the TLR 2field, and therefore will affect
the accuracy of the detection process. However given the ability to perform short and fast pulses in those devices
[15]wedonot expect it to be detrimental for the present proposal. Amore detailed investigation on that is
required.

Figure 4. (a)Wignerdistibution for the TLR-2 field, as given in equation (14) forN= 1,A= 1 and e 50t2 1 =g . Integrating theWigner
distributionwith respect to variable Re( )a , dRe( ) ( ) ò a a= , we obtain the visualization of theNEMS thermal phonon
distribuiton P(n) depicted [29] in the histogram (b).

6

New J. Phys. 17 (2015) 093010 OPde SáNeto et al



Acknowledgments

OPSNwork is supported in part byCAPES.MCOacknowledges support by FAPESP andCNPq through the
National Institute for Science andTechnology onQuantum Information and theResearchCenter inOptics and
Photonics (CePOF). GJM acknowledges the support of theAustralian ResearchCouncil CE110001013.OPSN is
grateful to LDMachado, S SCoutinho, KMSGarcez, J Lozada-Vera, ACarrillo and FNicacio for helpful
discussions.

Appendix. Derivation ofHamiltonian (2)

Weconsider themodel infigure A1 , where the three lowest Josephson junction charge states form a three-level
artificial atom is in a configurationwhere the ground ( g∣ ñ) and excited ( e∣ ñ) states are separated by an
intermediary atomic level ( i∣ ñ). Themodes with frequency 1W , 2W and 3W are coupled to the transitions
g i∣ ∣ñ « ñ, i e∣ ∣ñ « ñand g e∣ ∣ñ « ñwith coupling constants g1, g2 and g3, respectively.

TheHamiltonian in the rotatingwave approximation is

H H V , A.10 ( )= +

being

H a a A.2
j

j j j e ee i ii g gg0
1

3

( )†   å s s s= W + W + W + W
=

and

V g a g a g a h. c. , A.3ig ei eg1 1 2 2 3 3( ) ( )† † † s s s= + + +

where j kjk ∣ ∣s = ñá is the atomic transition for j k g i e, , ,= .WritingH in the interaction picture, by applying

U t e H t
0

i 0( ) = - , and transforming it throughU e t
1

i ee gg( )= s s- D + , we obtain

Figure A1. (a) Scheme for generation of a parametric oscillator, via the pulse applied to the TLR-2, coupled to an artificial three-level
atom; (b) energy-level diagram, observing theHamiltonian (A.2), (A.3) and i g e i1 2( )D = - W - W - W = W - W - W (with

g wW = - , e wW = and i iwW = - ) and e g3 dW = W - W - .
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H

g a g a g a

g a g a g a . A.4

ee gg

gi ie ge

ig ei eg

1 1 2 2 3 3

1 1 2 2 3 3

( )˜

( )† † †* * *


s s

s s s

s s s

=- D +

+ + +

+ + +

Therefore, theHeisenberg equations ofmotion for the coherences gis and ies are

g a g a g ai A.5ig ig ii gg ie eg1 1 3 3 2 2˙ ( ) ( )†*s s s s s s= -D + - + -

and

g a g a g ai . A.6ie ie ii ee ig ge2 2 3 3 1 1˙ ( ) ( )† †* *s s s s s s= -D + - + -

Assuming that initially the artificail atom is prepared in the state i∣ ñand that bothΔ and δ and large enough so
that the states e∣ ñand g∣ ñare not significantly populated so that 1iis = , in the limit where

g g g, , ,1 2 3∣ ∣ ∣ ∣ ∣ ∣ dD  , we have the adiabatic solutionwith 0ig ie˙ ˙s s= = . Next, the expression of gis and ies , we

can consider g a a2
3
2

3 3
2†D - @ D , the termswith ggs , ees , ges and egs can be neglected, resulting in the solution

g
a

g g
a a A.7ig

1
1

2 3

2 2 3 ( )†
*

s @
D

+
D

and

g
a

g g
a a . A.8ie

2
2

1 3
2 1 3 ( )† †

* *
s @

D
+

D
In this way, preparing the artificial atom in intermediate state i∣ ñ, and replacing (A.7) and (A.8) expressions in
Hamiltonian (A.4), we obtain the effectiveHamiltonian of the form

H g
a a

g
a a

g g g
a a a

g g g
a a a

2
, A.9eff 1

2

1 1
2
2

2 2
1 2 3

2 1 2 3
1 2 3

2 1 2 3

˜
( )† † † † †

*


=

D
+

D
+

D
+

D

being g1 and g2 real. Now, applying the transformationU e t g a a g a a
2

i 1
2

1 1 2
2

2 2( )† †
= - + D/ , a i3 b= being a

coherent pulse source of amplitudeβ, and g e t
3 3

i d- so that its frequency is adjusted to g g
1
2

2
2( )d = + D,

we obtain

H a ai
2

, A.10p
2 2( ) ( )† g= - -

with a a a1 2= = , 1 2 wW = W = , g g4 1 2 3
2g b= D . Note that in this case, the effective frequency is satisfied

for g g23 1
2

2
2( )wW = - + D.
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