30,737 research outputs found
Adaptive meshless refinement schemes for RBF-PUM collocation
In this paper we present an adaptive discretization technique for solving
elliptic partial differential equations via a collocation radial basis function
partition of unity method. In particular, we propose a new adaptive scheme
based on the construction of an error indicator and a refinement algorithm,
which used together turn out to be ad-hoc strategies within this framework. The
performance of the adaptive meshless refinement scheme is assessed by numerical
tests
Efficient computation of partition of unity interpolants through a block-based searching technique
In this paper we propose a new efficient interpolation tool, extremely
suitable for large scattered data sets. The partition of unity method is used
and performed by blending Radial Basis Functions (RBFs) as local approximants
and using locally supported weight functions. In particular we present a new
space-partitioning data structure based on a partition of the underlying
generic domain in blocks. This approach allows us to examine only a reduced
number of blocks in the search process of the nearest neighbour points, leading
to an optimized searching routine. Complexity analysis and numerical
experiments in two- and three-dimensional interpolation support our findings.
Some applications to geometric modelling are also considered. Moreover, the
associated software package written in \textsc{Matlab} is here discussed and
made available to the scientific community
RBF approximation of large datasets by partition of unity and local stabilization
We present an algorithm to approximate large dataset by Radial Basis Function
(RBF) techniques. The method couples a fast domain decomposition procedure with a
localized stabilization method. The resulting algorithm can efficiently deal with large
problems and it is robust with respect to the typical instability of kernel methods
Partition of unity interpolation using stable kernel-based techniques
In this paper we propose a new stable and accurate approximation technique
which is extremely effective for interpolating large scattered data sets. The
Partition of Unity (PU) method is performed considering Radial Basis Functions
(RBFs) as local approximants and using locally supported weights. In
particular, the approach consists in computing, for each PU subdomain, a stable
basis. Such technique, taking advantage of the local scheme, leads to a
significant benefit in terms of stability, especially for flat kernels.
Furthermore, an optimized searching procedure is applied to build the local
stable bases, thus rendering the method more efficient
Quantum erasure in the presence of a thermal bath: the effects of system-environment microscopic correlations
We investigate the role of the environment in a quantum erasure setup in the
cavity quantum electrodynamics domain. Two slightly different schemes are
analyzed. We show that the effects of the environment vary when a scheme is
exchanged for another. This can be used to estimate the macroscopic parameters
related to the system-environment microscopic correlations.Comment: 10 pages, 2 figure
Control of state and state entanglement with a single auxiliary subsystem
We present a strategy to control the evolution of a quantum system. The novel
aspect of this protocol is the use of a \emph{single auxiliary subsystem}. Two
applications are given, one which allows for state preservation and another
which controls the degree of entanglement of a given initial state
MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells
Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy
- …