591 research outputs found

    Cognitive intraindividual variability and white matter integrity in aging

    Get PDF
    The intraindividual variability (IIV) of cognitive performance has been shown to increase with aging. While brain research has generally focused on mean performance, little is known about neural correlates of cognitive IIV. Nevertheless, some studies suggest that IIV relates more strongly than mean level of performance to the quality of white matter (WM). Our study aims to explore the relation between WM integrity and cognitive IIV by combining functional (fMRI) and structural (diffusion tensor imaging, DTI) imaging. Twelve young adults (aged 18-30 years) and thirteen older adults (61-82 years) underwent a battery of neuropsychological tasks, along with fMRI and DTI imaging. Their behavioral data were analyzed and correlated with the imaging data at WM regions of interest defined on the basis of (1) the fMRI-activated areas and (2) the Johns Hopkins University (JHU) WM tractography atlas. For both methods, fractional anisotropy, along with the mean, radial, and axial diffusivity parameters, was computed. In accord with previous studies, our results showed that the DTI parameters were more related to IIV than to mean performance. Results also indicated that age differences in the DTI parameters were more pronounced in the regions activated primarily by young adults during a choice reaction-time task than in those also activated in older adults. © 2013 Nathalie Mella et al

    Moderating Effect of Cortical Thickness on BOLD Signal Variability Age-Related Changes

    Get PDF
    The time course of neuroanatomical structural and functional measures across the lifespan is commonly reported in association with aging. Blood oxygen-level dependent signal variability, estimated using the standard deviation of the signal, or BOLDSD , is an emerging metric of variability in neural processing, and has been shown to be positively correlated with cognitive flexibility. Generally, BOLDSD is reported to decrease with aging, and is thought to reflect age-related cognitive decline. Additionally, it is well established that normative aging is associated with structural changes in brain regions, and that these predict functional decline in various cognitive domains. Nevertheless, the interaction between alterations in cortical morphology and BOLDSD changes has not been modeled quantitatively. The objective of the current study was to investigate the influence of cortical morphology metrics [i.e., cortical thickness (CT), gray matter (GM) volume, and cortical area (CA)] on age-related BOLDSD changes by treating these cortical morphology metrics as possible physiological confounds using linear mixed models. We studied these metrics in 28 healthy older subjects scanned twice at approximately 2.5 years interval. Results show that BOLDSD is confounded by cortical morphology metrics. Respectively, changes in CT but not GM volume nor CA, show a significant interaction with BOLDSD alterations. Our study highlights that CT changes should be considered when evaluating BOLDSD alternations in the lifespan

    Extracting discourse elements and annotating scientific documents using the SciAnnotDoc model: a use case in gender documents

    Get PDF
    When scientists are searching for informa- tion, they generally have a precise objective in mind. Instead of looking for documents “about a topic T”, they try to answer specific questions such as finding the definition of a concept, finding results for a particular problem, checking whether an idea has already been tested, or comparing the scientific conclusions of two articles. Answering these precise or complex queries on a corpus of scientific documents requires precise mod- elling of the full content of the documents. In particu- lar, each document element must be characterised by its discourse type (hypothesis, definition, result, method, etc.). In this paper we present a scientific document model (SciAnnotDoc ontology), developed from an em- pirical study conducted with scientists, that models the discourse types. We developed an automated process that analyse documents effectively identifying the dis- course types of each element. Using syntactic rules (pat- terns), we evaluated the process output in terms of pre- cision and recall using a previously annotated corpus in Gender Studies. We chose to annotate documents in Humanities, as these documents are well known to be less formalised than those in “hard science”. The process output has been used to create a SciAnnotDoc representation of the corpus on top of which we built a faceted search interface. Experiments with users show that searches using with this interface clearly outper- form standard keyword searches for precise or complex queries

    Editorial: Challenges for the usability of AR and VR for clinical neurosurgical procedures

    Get PDF
    There are a number of challenges that must be faced when trying to develop AR and VR-based Neurosurgical simulators, Surgical Navigation Platforms, and “Smart OR” systems. Trying to simulate an operating room environment and surgical tasks in Augmented and Virtual Reality is a challenge many are attempting to solve, in order to train surgeons or help them operate. What are some of the needs of the surgeon, and what are the challenges encountered (human computer interface, perception, workflow, etc). We discuss these tradeoffs and conclude with critical remarks

    Age Differences in Text Processing: The Role of Working Memory, Inhibition, and Processing Speed

    Get PDF
    Objectives. Age-related changes in the efficiency of various general cognitive mechanisms have been evoked to account for age-related differences between young and older adults in text comprehension performance. Using structural equation modeling, we investigate the relationship between age, working memory (WM), inhibition-related mechanisms, processing speed, and text comprehension, focusing on surface and text-based levels of processing. Methods. Eighty-nine younger (M = 23.11 years) and 102 older (M = 70.50 years) adults were presented text comprehension, WM, inhibition, and processing speed tasks. In the text comprehension task, the demand on the memory system was manipulated, by allowing (text present) or not (text absent) viewing the text during the answering phase. Results. As expected, age differences were larger when the text was absent. The best fitting model showed that WM mediated the influence of age on both text processing conditions, whereas age-related variance in WM was, in turn, accounted for by processing speed and inhibition. Discussion. These findings confirm the hypothesis that WM capacity explains age differences in text processing, while it is itself accounted for by the efficiency of inhibiting irrelevant information and by speed of processin

    Combining NLP and Semantics for Mining Software Technologies from Research Publications

    Get PDF
    The natural language processing (NLP) community has developed a variety of methods for extracting and disambiguating information from research publications. However, they usually focus only on standard research entities such as authors, affiliations, venues, references and keywords. We propose a novel approach, which combines NLP and semantic technologies for generating from the text of research publications an OWL ontology describing software technologies used or introduced by researchers, such as applications, systems, frameworks, programming languages, and formats. The method was tested on a sample of 300 publications in the Semantic Web field, yielding promising results

    Mapping of Structure-Function Age-Related Connectivity Changes on Cognition Using Multimodal MRI

    Get PDF
    The relationship between age-related changes in brain structural connectivity (SC) and functional connectivity (FC) with cognition is not well understood. Furthermore, it is not clear whether cognition is represented via a similar spatial pattern of FC and SC or instead is mapped by distinct sets of distributed connectivity patterns. To this end, we used a longitudinal, within-subject, multimodal approach aiming to combine brain data from diffusion-weighted MRI (DW-MRI), and functional MRI (fMRI) with behavioral evaluation, to better understand how changes in FC and SC correlate with changes in cognition in a sample of older adults. FC and SC measures were derived from the multimodal scans acquired at two time points. Change in FC and SC was correlated with 13 behavioral measures of cognitive function using Partial Least Squares Correlation (PLSC). Two of the measures indicate an age-related change in cognition and the rest indicate baseline cognitive performance. FC and SC—cognition correlations were expressed across several cognitive measures, and numerous structural and functional cortical connections, mainly cingulo-opercular, dorsolateral prefrontal, somatosensory and motor, and temporo-parieto-occipital, contributed both positively and negatively to the brain-behavior relationship. Whole-brain FC and SC captured distinct and independent connections related to the cognitive measures. Overall, we examined age-related function-structure associations of the brain in a comprehensive and integrated manner, using a multimodal approach. We pointed out the behavioral relevance of age-related changes in FC and SC. Taken together, our results highlight that the heterogeneity in distributed FC and SC connectivity patterns provide unique information about the variable nature of healthy cognitive aging

    Design and evaluation of an augmented reality simulator using leap motion

    Get PDF
    Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices\u27 and experts\u27 speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system
    corecore