8 research outputs found

    Cross-disorder and disorder-specific deficits in social functioning among schizophrenia and Alzheimer's disease patients

    Get PDF
    BACKGROUND: Social functioning is often impaired in schizophrenia (SZ) and Alzheimer's disease (AD). However, commonalities and differences in social dysfunction among these patient groups remain elusive.MATERIALS AND METHODS: Using data from the PRISM study, behavioral (all subscales and total score of the Social Functioning Scale) and affective (perceived social disability and loneliness) indicators of social functioning were measured in patients with SZ (N = 56), probable AD (N = 50) and age-matched healthy controls groups (HC, N = 29 and N = 28). We examined to what extent social functioning differed between disease and age-matched HC groups, as well as between patient groups. Furthermore, we examined how severity of disease and mood were correlated with social functioning, irrespective of diagnosis.RESULTS: As compared to HC, both behavioral and affective social functioning seemed impaired in SZ patients (Cohen's d's 0.81-1.69), whereas AD patients mainly showed impaired behavioral social function (Cohen's d's 0.65-1.14). While behavioral indices of social functioning were similar across patient groups, SZ patients reported more perceived social disability than AD patients (Cohen's d's 0.65). Across patient groups, positive mood, lower depression and anxiety levels were strong determinants of better social functioning (p's &lt;0.001), even more so than severity of disease.CONCLUSIONS: AD and SZ patients both exhibit poor social functioning in comparison to age- and sex matched HC participants. Social dysfunction in SZ patients may be more severe than in AD patients, though this may be due to underreporting by AD patients. Across patients, social functioning appeared as more influenced by mood states than by severity of disease.</p

    Peptide-mediated ‘miniprep’ isolation of extracellular vesicles is suitable for high-throughput proteomics

    Get PDF
    Extracellular vesicles (EVs) are cell-secreted membrane vesicles enclosed by a lipid bilayer derived from endosomes or from the plasma membrane. Since EVs are released into body fluids, and their cargo includes tissue-specific and disease-related molecules, they represent a rich source for disease biomarkers. However, standard ultracentrifugation methods for EV isolation are laborious, time-consuming, and require high inputs. Ghosh and co-workers recently described an isolation method utilizing Heat Shock Protein (HSP)-binding peptide Vn96 to aggregate HSP-decorated EVs, which can be performed at small ‘miniprep’ scale. Based on microscopic, immunoblot, and RNA sequencing analyses this method compared well with ultracentrifugation-mediated EV isolation, but a detailed proteomic comparison was lacking. Therefore, we compared both methods using label-free proteomics of replicate EV isolations from HT-29 cell-conditioned medium. Despite a 30-fold different scale (ultracentrifugation: 60 ml/Vn96-mediated aggregation: 2 ml) both methods yielded comparable numbers of identified proteins (3115/3085), with similar reproducibility of identification (72.5%/75.5%) and spectral count-based quantification (average CV: 31%/27%). EV fractions obtained with either method contained established EV markers and proteins linked to vesicle-related gene ontologies. Thus, Vn96 peptide-mediated aggregation is an advantageous, simple and rapid approach for EV isolation from small biological samples, enabling high-throughput analysis in a biomarker discovery setting

    Proteome analysis of non-small cell lung cancer cell line secretomes and patient sputum reveals biofluid biomarker candidates for cisplatin response prediction

    No full text
    Molecular markers are urgently needed to select non-small cell lung cancer (NSCLC) patients most likely to benefit from platinum-based chemotherapies. Of particular interest are proteins that can be found in biofluids like sputum for non-invasive detection. Therefore, we profiled the secretomes of 6 NSCLC cell lines with varying IC50-values for cisplatin, using label-free GeLC-MS/MS-based proteomics. Out of a total dataset of 2610 proteins, 304 proteins showed significant differences in expression levels between cisplatin sensitive and insensitive cell lines. Functional data mining revealed that the secretion of typically extracellular factors was associated with a higher sensitivity towards cisplatin, while cisplatin insensitivity correlated with increased secretion of theoretically intra-cellular proteins. Stringent statistical analysis and quantitative filtering yielded 58 biomarker candidates, 34 of which could be detected in clinical biofluids of lung cancer patients such as sputum using label-free LC-MS/MS-based proteomics. To assess performance of these biofluid biomarker candidates, we correlated protein expression with patient survival using a publically available clinical gene expression data set (GSE14814). We thus identified 3 top candidates with potential predictive value in determining cisplatin response (UGGT1, COL6A1 and MAP4) for future development as non-invasive biomarkers to guide treatment decisions. Significance: Platinum-based chemotherapies are still the standard of care for NSCLC and other lung cancer types in the clinic today. However, due to chemoresistance, many patients suffer from the toxic side effects of these treatments without gaining any benefit in terms of survival. To date, no molecular biomarkers are available to predict clinical outcome of platinum-based chemotherapy. Because proteins present the functional read-out of genetic, epigenetic and translational events in the cell, a protein test is likely to be particularly suitable for response prediction. Of high relevance are proteins that are shed or secreted from cells, for example at primary tumor sites, and can be found in easily accessible biofluids like sputum for non-invasive detection. Here, we report the proteome profiling of the conditioned media (secretomes) of a panel of NSCLC cell lines in relation to cisplatin IC50 values, as a pre-clinical model, and of patient sputum as a clinical, lung cancer relevant biofluid. Using this approach in conjunction with exploration of the predictive potential in a transcriptome lung cancer patient dataset, we reveal biofluid biomarker candidates that, with further validation, may be used for non-invasive cisplatin response prediction in the future

    Effects of Cancer Presence and Therapy on the Platelet Proteome

    No full text
    Platelets are involved in tumor angiogenesis and cancer progression. Previous studies indicated that cancer could affect platelet content. In the current study, we investigated whether cancer-associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry-based proteomics of gel-fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upregulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome

    Effects of Cancer Presence and Therapy on the Platelet Proteome

    No full text
    Platelets are involved in tumor angiogenesis and cancer progression. Previous studies indicated that cancer could affect platelet content. In the current study, we investigated whether cancer-associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry-based proteomics of gel-fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upregulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome

    Effects of cancer presence and therapy on the platelet proteome

    No full text
    Platelets are involved in tumor angiogenesis and cancer progression. Previous studies in-dicated that cancer could affect platelet content. In the current study, we investigated whether can-cer‐associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry‐based proteomics of gel‐fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upreg-ulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome
    corecore