33 research outputs found

    Specific Oncogenic Activity of the Src-Family Tyrosine Kinase c-Yes in Colon Carcinoma Cells

    Get PDF
    c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of ÎČ-catenin at cell membranes and a reduction of expression of ÎČ-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in ÎČ-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src

    Cell fragmentation in mouse preimplantation embryos induced by ectopic activation of the polar body extrusion pathway

    No full text
    International audienceCell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition

    Ectopic activation of the polar body extrusion pathway triggers cell fragmentation in preimplantation embryos

    No full text
    Abstract Cell fragmentation occurs during physiological processes, such as apoptosis, migration, or germ cell development. Fragmentation is also commonly observed during preimplantation development of human embryos and is associated with poor implantation prognosis during Assisted Reproductive Technology (ART) procedures. Despite its biological and clinical relevance, the mechanisms leading to cell fragmentation are unclear. Light sheet microscopy imaging of mouse embryos reveals that compromised spindle anchoring, due to Myo1c knockout or dynein inhibition, leads to fragmentation. We further show that defective spindle anchoring brings DNA in close proximity to the cell cortex, which, in stark contrast to previous reports in mitotic cells, locally triggers actomyosin contractility and pinches off cell fragments. The activation of actomyosin contractility by DNA in preimplantation embryos is reminiscent of the signals mediated by small GTPases throughout polar body extrusion (PBE) during meiosis. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition

    Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst

    No full text
    International audienceDuring mouse preimplantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. What controls the formation and positioning of this basolateral lumen remains obscure. We find that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micron-size lumens. Microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tune the hydraulic fracturing of cell-cell contacts and steer the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo

    Sensitization of EGFR wild-type non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitor erlotinib.: wtEGFR non-small cell lung cancer sensitization to erlotinib

    No full text
    International audienceThe benefit of EGFR-TKI in non-small cell lung cancer has been demonstrated in mutant EGFR tumors as first-line treatment but the benefit in wild-type EGFR tumors is marginal as well as restricted to maintenance therapy in pretreated patients. This work aimed at questioning the effects of cisplatin initial treatment on the EGFR pathway in non-small cell lung cancer and the functional consequences in vitro and in in vivo animal models of Patient-Derived Xenografts (PDX). We establish here that cisplatin pretreatment specifically sensitizes wild-type EGFR expressing cells to erlotinib, contrary to what happens in mutant-EGFR cells and with a blocking EGFR antibody, both in vitro and in vivo. The sensitization entails the activation of the kinase Src upstream of EGFR, thereafter transactivating EGFR through a ligand-independent activation. We propose a combination of markers which enable to discriminate between the tumors sensitized to erlotinib or not in PDX models, that should be worth testing in patients. These markers might be useful for the selection of patients who would benefit from erlotinib as a maintenance therapy

    Sensitization of EGFR wild-type non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitor erlotinib.: wtEGFR non-small cell lung cancer sensitization to erlotinib

    No full text
    International audienceThe benefit of EGFR-TKI in non-small cell lung cancer has been demonstrated in mutant EGFR tumors as first-line treatment but the benefit in wild-type EGFR tumors is marginal as well as restricted to maintenance therapy in pretreated patients. This work aimed at questioning the effects of cisplatin initial treatment on the EGFR pathway in non-small cell lung cancer and the functional consequences in vitro and in in vivo animal models of Patient-Derived Xenografts (PDX). We establish here that cisplatin pretreatment specifically sensitizes wild-type EGFR expressing cells to erlotinib, contrary to what happens in mutant-EGFR cells and with a blocking EGFR antibody, both in vitro and in vivo. The sensitization entails the activation of the kinase Src upstream of EGFR, thereafter transactivating EGFR through a ligand-independent activation. We propose a combination of markers which enable to discriminate between the tumors sensitized to erlotinib or not in PDX models, that should be worth testing in patients. These markers might be useful for the selection of patients who would benefit from erlotinib as a maintenance therapy

    Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers

    No full text
    International audienceThe receptor tyrosine kinase RET is implicated in the progression of luminal breast cancers (BC) but its role in estrogen receptor (ER) negative tumors is unknown. Here we investigated the expression of RET in breast cancer patients tumors and patient-derived xenografts (PDX) and evaluated the therapeutic potential of Vandetanib, a tyrosin kinase inhibitor with strong activity against RET, EGFR and VEGFR2, in ER negative breast cancer PDX. The RT-PCR analysis of RET expression in breast tumors of 446 patients and 57 PDX, showed elevated levels of RET in ER+ and HER2+ subtypes and in a small subgroup of triple-negative breast cancers (TNBC). The activity of Vandetanib was tested in vivo in three PDX models of TNBC and one model of HER2+ BC with different expression levels of RET and EGFR. Vandetanib induced tumor regression in PDX models with high expression of RET or EGFR. The effect was associated with inhibition of RET/EGFR phosphorylation and MAP kinase pathway and increased necrosis. In a PDX model with no expression of RET nor EGFR, Vandetanib slowed tumor growth without inducing tumor regression. In addition, treatment by Vandetanib decreased expression of murine Vegf receptors and the endothelial marker Cd31 in the four PDX models tested, suggesting inhibition of tumor vascularization. In summary, these preclinical results suggest that Vandetanib treatment could be useful for patients with ER negative breast cancers overexpressing Vandetanib's main targets. What's new? Tyrosine kinase receptors have emerged as key targets in breast cancer treatment. Here the authors examine the role of REarranged during Transfection (RET) and epidermal growth factor receptor (EGFR) in estrogen receptor-negative breast cancers. They show tumor regression induced by the multikinase inhibitor Vandetanib in cancers with high expression of RET or EGFR. In two cohorts of primary breast cancer and patient-derived xenografts, one third of tumors showed expression of at least one of the two kinase receptors, underscoring Vandetanib's potential as an effective treatment option for estrogen receptor-negative breast cancers with high expression of RET or EGFR

    Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings.

    Get PDF
    International audienceBACKGROUND: Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. METHODS: To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. RESULTS: As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. CONCLUSIONS: Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies

    Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts.

    Get PDF
    Uveal melanoma (UM) is associated with a high risk of metastases and lack of efficient therapies. Reduced capacity for apoptosis induction by chemotherapies is one obstacle to efficient treatments. Human UM is characterized by high expression of the anti-apoptotic protein Bcl-2. Consequently, regulators of apoptosis such as Bcl-2 family inhibitors may constitute an attractive approach to UM therapeutics. In this aim, we have investigated the efficacy of the Bcl-2/Bcl-XL inhibitor S44563 on 4 UM Patient-Derived Xenografts (PDXs) and derived-cell lines.Four well characterized UM PDXs were used for in vivo experiments. S44563 was administered alone or combined with fotemustine either concomitantly or after the alkylating agent. Bcl-2, Bcl-XL, and Mcl-1 expressions after S44563 administration were evaluated by immunohistochemistry (IHC).S44563 administered alone by at 50 and 100 mg/kg i.p. induced a significant tumour growth inhibition in only one xenograft model with a clear dose effect. However, when S44563 was concomitantly administered with fotemustine, we observed a synergistic activity in 3 out of the 4 tested models. In addition, S44563 administered after fotemustine induced a tumour growth delay in 2 out of 3 tested xenografts. Finally, IHC analyses showed that Bcl-2, Bcl-XL, and Mcl-1 expression were not modified after S44563 administration.The novel anti-apoptotic experimental compound S44563, despite a relative low efficacy when administered alone, increased the efficacy of fotemustine in either concomitant or sequential combinations or indeed subsequent to fotemustine. These data support further exploration of potential therapeutic effect of Bcl-2/Bcl-xl inhibition in human UM

    Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers

    No full text
    Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers. Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response. In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT
    corecore