599 research outputs found

    Prevalence Of α-thalassemia 3.7 Kb Deletion In The Adult Population Of Rio Grande Do Norte, Brazil

    Get PDF
    α-Thalassemia, arising from a defect in α-globin chain synthesis, is often caused by deletions involving one or both of the α-genes on the same allele. With the aim of investigating the prevalence of α-thalassemia 3.7 kb deletion in the adult population of Rio Grande do Norte, 713 unrelated individuals, between 18 and 59 years-of-age, were analyzed. Red blood cell indices were electronically determined, and A 2 and F hemoglobins evaluated by HPLC. PCR was applied to the molecular investigation of α-thalassemia 3.7 kb deletion. Eighty (11.2%) of the 713 individuals investigated presented α-thalassemia, of which 79 (11.1%) were heterozygous (-α 3.7/αα) deletions and 1 (0.1%) homozygous (-α 3.7/-α 3.7). Ethnically, heterozygous deletions were higher (24.8%) in Afro-Brazilians. Comparison of hematological parameters between individuals with normal genotype and those with heterozygous α +-thalassemia showed a statistically significant difference in the number of erythrocytes (p < 0.001), MCV (p < 0.001), MCH (p < 0.001) and Hb A 2 (p = 0.007). This study is one of the first dedicated to investigating α-thalassemia 3.7 kb deletion in the population of the State Rio Grande do Norte state. Results obtained demonstrate the importance of investigating this condition in order to elucidate the causes of microcytosis and hypochromia. © 2012, Sociedade Brasileira de Genética. Printed in Brazil.353594598Adorno, E.V., Couto, F.D., Moura Neto, J.P., Menezes, J.F., Rêgo, M., Reis, M.G., Gonçalves, M.S., Hemoglobinopathies in newborns from Salvador, Bahia, Northeast Brazil (2005) Cad Saúde Pública, 21, pp. 292-298Bezerra, C.M., Meissner, R.V., Diagnóstico molecular da talassemia alfa + (deleção-( 3.7) em indivíduos com microcitose e/ou hipocromia atendidos no Hemocentro Dalton Barbosa Cunha em Natal, Rio Grande do Norte (2010) Rev Bras Hematol Hemoter, 32, pp. 90-91. , (Abstract in English)Borg, J., Georgitsi, M., Aleporou-Marinou, V., Kollia, P., Patrinos, G.P., Genetic recombination as a major cause of mutagenesis in the human globin gene clusters (2009) Clin Biochem, 42, pp. 1839-1850Borges, E., Wenning, M.R.S.C., Kimura, E.M., Gervásio, S.A., Costa, F.F., Sonati, M.F., High prevalence of alpha-thalassemia among individuals with microcytosis and hypochromia without anemia (2001) Braz J Med Biol Res, 34, pp. 759-762Cascudo, L.C., (1984) História do Rio Grande do Norte, p. 524. , 2 edition. Fundação José Augusto, NatalCouto, F.D., Albuquerque, A.B.L., Adorno, E.V., Moura Neto, J.P., Freitas, A.L., Oliveira, J.L.B., Reis, M.G., Gonçalves, M.S., Alpha-thalassemia-2, 3.7 kb deletion and hemoglobin AC heterozygosity in pregnancy: A molecular and hematological analysis (2003) Clin Lab Haematol, 25, pp. 29-34Dacie, J.V., Lewis, S.M., (1995) Practical Haematology., p. 608. , Churchill Livingstone, EdinburghDodé, C., Krishnamoorthy, R., Lamb, J., Rochette, J., Rapid analysis of-α 3.7 thalassaemia and ttt anti3.7 triplication by enzymatic amplification analysis (1992) Br J Haematol, 83, pp. 105-111Harteveld, L.C., Higgs, D.R., H-thalassaemia (2010) Orphanet J Rare Dis, 5, pp. 1-21Higgs, D.R., H-Thalassaemia (1993) Baillière's Clin Haematol, 6, pp. 117-150Higgs, D.R., The pathopysiology and clinical features of H thalassemia (2009) Disorders of Hemoglobin, pp. 266-295. , In: Steinberg MH, Forget BG, Higgs DR and Weatherall DJ (eds) 2 nd edition. Cambridge University Press, New YorkHiggs, D.R., Weatherall, D.J., The alpha thalassaemias (2009) Cell Mol Life Sci, 66, pp. 1154-1162Mouélé, R., Pambou, O., Feingold, J., Galactéros, F., M-thalassemia in Bantu population from Congo-Brazzaville: Its interaction with sickle cell anemia (2000) Hum Hered, 50, pp. 118-125Peres, M.J., Romão, L., Carreiro, H., Picanço, I., Batalha, L., Magalhães, H.A., Martins, M.C., Lavinha, J., Molecular basis of H-thalassemia in Portugal (1995) Hemoglobin, 19, pp. 343-352Rahim, F., Microcytic hypochromic anemia patients with thalassemia: Genotyping approach (2009) J Med, 63, pp. 101-108Sankar, V.H., Arya, V., Tewari, D., Gupta, U.R., Pradhan, M., Genotyping of alpha-thalassemia in microcytic hypochromic anemia patients from North India (2006) Indian J Med Res, 47, pp. 391-395Sonati, M.F., Farah, S.B., Ramalho, A.S., Costa, F.F., High prevalence of alpha-thalassemia in a black population of Brazil (1991) Hemoglobin, 15, pp. 309-311Souza, A.E.S., Takanashi, S.Y.L., Cardoso, G., Guerreiro, J.F., S-thalassemia (3.7 kb deletion) in a population from the Brazilian Amazon region: Santarém, Pará State (2009) Genet Mol Res, 8, pp. 477-481Steinberg, M.H., Nagel, R.L., Hemoglobins of the embryo, fetus and adult (2009) Disorders of Hemoglobin, pp. 119-135. , In: Steinberg MH, Forget BG, Higgs DR and Weatherall DJ (eds) 2 nd edition. Cambridge University Press, New YorkWagner, S.C., Castro, S.M., Gonzalez, T.P., Santin, A.P., Filippon, L., Zaleski, C.F., Azevedo, L.A., Hutz, M., Prevalence of common c-thalassemia determinants in south Brazil: Importance for the diagnosis of microcytic anemia (2010) Genet Mol Biol, 33, pp. 641-645Weatherall, D.J., Clegg, J.B., Inherited haemoglobin disorders: An increasing global health problem (2001) Bull World Health Organ, 79, pp. 704-71

    Nanometric Particle Size And Phase Controlled Synthesis And Characterization Of γ-fe2o3 Or (α + γ)-fe2o3 By A Modified Sol-gel Method

    Get PDF
    Fe2O3 nanoparticles with sizes ranging from 15 to 53 nm were synthesized by a modified sol-gel method. Maghemite particles as well as particles with admixture of maghemite and hematite were obtained and characterized by XRD, FTIR, UV-Vis photoacoustic and Mössbauer spectroscopy, TEM, and magnetic measurements. The size and hematite/maghemite ratio of the nanoparticles were controlled by changing the Fe:PVA (poly (vinyl alcohol)) monomeric unit ratio used in the medium reaction (1:6, 1:12, 1:18, and 1:24). The average size of the nanoparticles decreases, and the maghemite content increases with increasing PVA amount until 1:18 ratio. The maghemite and hematite nanoparticles showed cubic and hexagonal morphology, respectively. Direct band gap energy were 1.77 and 1.91 eV for A6 and A18 samples. Zero-field-cooling-field-cooling curves show that samples present superparamagnetic behavior. Maghemite-hematite phase transition and hematite Néel transition were observed near 700 K and 1015 K, respectively. Magnetization of the particles increases consistently with the increase in the amount of PVA used in the synthesis. Mössbauer spectra were adjusted with a hematite sextet and maghemite distribution for A6, A12, and A24 and with maghemite distribution for A18, in agreement with XRD results. © 2013 AIP Publishing LLC.11410Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Liu, Z.F., (2012) Sci. Total Environ., 424, pp. 1-10. , 10.1016/j.scitotenv.2012.02.023Rajabi, F., Karimi, N., Saidi, M.R., Primo, A., Varma, R.S., Luque, R., (2012) Adv. Synth. Catal., 354, pp. 1707-1711. , 10.1002/adsc.201100630Kitamuraa, H., Zhaob, L., Hangc, B.T., Okadab, S., Yamaki, J.-I., (2012) J. Power Sources, 208, pp. 391-396. , 10.1016/j.jpowsour.2012.02.051Figuerola, A., Di Corato, R., Manna, L., Pellegrino, T., (2010) Pharmacol. Res., 62, pp. 126-143. , 10.1016/j.phrs.2009.12.012Yang, H.-M., Oh, B.C., Kim, J.H., Ahn, T., Nam, H.-S., Park, C.W., Kim, J.-D., (2011) Colloids Surf., A, 391, pp. 208-215. , 10.1016/j.colsurfa.2011.04.032Xu, H., Aguilar, Z.P., Yang, L., Kuang, M., Duan, H., Xiong, Y., Wei, H., Wang, A., (2011) Biomaterials, 32, pp. 9758-9765. , 10.1016/j.biomaterials.2011.08.076Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T., (2011) Adv. Drug Delivery Rev., 63, pp. 24-46. , 10.1016/j.addr.2010.05.006Jolivet, J.-P., Cassaignon, S., Chanéac, C., Chiche, D., Durupthy, O., Portehault, D., (2010) C. R. Chim., 13, pp. 40-51. , 10.1016/j.crci.2009.09.012Yang, S., Jang, Y.-H., Kim, C.H., Hwang, C., Lee, J., Chae, S., Jung, S., Choi, M., (2010) Powder Technol., 197, pp. 170-176. , 10.1016/j.powtec.2009.09.011Wu, Y., Wang, X., (2011) Mater. Lett., 65, pp. 2062-2065. , 10.1016/j.matlet.2011.04.004Fernandes, D.M., Hechenleitner, A.A.W., Silva, M.F., Lima, M.K., Bittencourt, P.R.S., Silva, R., Melo, M.A.C., Pineda, E.A.G., (2009) Mater. Chem. Phys., 118, pp. 447-452. , 10.1016/j.matchemphys.2009.08.016Han, L.-H., Liu, H., Wei, Y., (2011) Powder Technol., 207, pp. 42-46. , 10.1016/j.powtec.2010.10.008Chen, L., Lin, Z., Zhao, C., Zheng, Y., Zhou, Y., Peng, H., (2011) J. Alloy Compd., 509, pp. 1-L5. , 10.1016/j.jallcom.2010.08.130Hassanjani-Roshan, A., Vaezi, M.R., Shokuhfar, A., Rajabali, Z., (2011) Particuology, 9, pp. 95-99. , 10.1016/j.partic.2010.05.013Khaleel, A., Al-Marzouqi, A., (2012) Mater. Lett., 68, pp. 385-387. , 10.1016/j.matlet.2011.11.002Komarneni, S., Hu, W., Noh, Y.D., Orden, A.V., Feng, S., Wei, C., Pang, H., Katsuki, H., (2012) Ceram. Int., 38, pp. 2563-2568. , 10.1016/j.ceramint.2011.11.027Fernandes, D.M., Silva, R., Hechenleitner, A.A.W., Radovanovic, E., Melo, M.A.C., Pineda, E.A.G., (2009) Mater. Chem. Phys., 115, pp. 110-115. , 10.1016/j.matchemphys.2008.11.038Rodriguez-Carvajal, J., (1993) Physica B, 192, pp. 55-69. , 10.1016/0921-4526(93)90108-ICornell, R.M., Sshwertmann, U., (2003) The Iron Oxides: Structures, Properties, Reactions, Occurrences and Uses, , (John Wiley Sons)Gotic, M., Music, S., Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions (2007) Journal of Molecular Structure, 834-836 (SPEC. ISS.), pp. 445-453. , DOI 10.1016/j.molstruc.2006.10.059, PII S0022286006009513Predoi, D., (2007) Dig. J. Nanomater. Biostruct., 2, pp. 169-173Namduri, H., Nasrazadani, S., (2008) Corros. Sci., 50, pp. 2493-2497. , 10.1016/j.corsci.2008.06.034Gulgun, M.A., Nguyen, M.H., Kriven, W.M., (1999) J. Am. Ceram. Soc., 82, pp. 556-560. , 10.1111/j.1151-2916.1999.tb01800.xFeng, J., Liu, T., Xu, Y., Zhao, J., He, Y., (2011) Ceram. Int., 37, pp. 1203-1207. , 10.1016/j.ceramint.2010.11.045Park, T.-J., Papaefthymiou, G.C., Moodenbaugh, A.R., Mao, Y., Wong, S.S., Synthesis and characterization of submicron single-crystalline Bi 2Fe4O9 cubes (2005) Journal of Materials Chemistry, 15 (21), pp. 2099-2105. , DOI 10.1039/b501552aLiu, T., Xu, Y., Zhao, J., (2010) J. Am. Ceram. Soc., 93, pp. 3637-3641. , 10.1111/j.1551-2916.2010.03945.xSarangi, P.P., Naik, B., Ghosh, N.N., (2009) Powder Technol., 192, pp. 245-249. , 10.1016/j.powtec.2009.01.002Sarangi, P.P., Naik, B.D., Vadera, S.R., Patra, M.K., Prakash, C., Ghosh, N.N., (2009) Mater. Technol.: Adv. Perform. Mater., 24, pp. 97-99. , 10.1179/175355509X387156Tauc, J., Grigorovici, R., Vancu, A., (1966) Phys. Status Solidi, 15, p. 627. , 10.1002/pssb.19660150224Martinez, F.L., Toledano-Luque, M., Gandia, J.J., Carabe, J., Bohne, W., Rohrich, J., Strub, E., Martil, I., Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering (2007) Journal of Physics D: Applied Physics, 40 (17), pp. 5256-5265. , DOI 10.1088/0022-3727/40/17/037, PII S0022372707493032, 037Rahman, M.M., Khan, S.B., Faisal, M., Asiri, A.M., Tariq, M.A., (2012) Electrochim. Acta, 75, pp. 164-170. , 10.1016/j.electacta.2012.04.093Gilbert, B., Frandsen, C., Maxey, E.R., Sherman, D.M., (2009) Phys. Rev. B, 79, p. 035108. , 10.1103/PhysRevB.79.035108Echigo, T., Aruguete, D.M., Murayamac, M., Hochella Jr., M.F., (2012) Geochim. Cosmochim. Acta, 90, pp. 149-162. , 10.1016/j.gca.2012.05.008Duret, A., Gratzel, M., Visible light-induced water oxidation on mesoscopic α-Fe 2O3 films made by ultrasonic spray pyrolysis (2005) Journal of Physical Chemistry B, 109 (36), pp. 17184-17191. , DOI 10.1021/jp044127cSouza, F.L., Lopes, K.P., Nascente, P.A.P., Leite, E.R., (2009) Sol. Energy Mater. Sol. Cells, 93, pp. 362-368. , 10.1016/j.solmat.2008.11.049De Oliveira, L.A.S., Sinnecker, J.P., Vieira, M.D., Penton-Madrigal, A., (2010) J. Appl. Phys., 107, pp. 09D907. , 10.1063/1.3362927Ennas, G., Marongiu, G., Musinu, A., Falqui, A., Ballirano, P., Caminiti, R., (1999) J. Mater. Res., 14, pp. 1570-1575. , 10.1557/JMR.1999.0210Wu, J., Mao, S., Ye, Z., Xie, Z., Zheng, L., (2010) ACS Appl. Mater. Interfaces, 2, pp. 1561-1564. , 10.1021/am1002052Phu, N.D., Ngo, D.T., Hoang, L.H., Luong, N.H., Chau, N., Hai, N.H., (2011) J. Phys. D: Appl. Phys., 44, p. 345002. , 10.1088/0022-3727/44/34/345002Nagar, H., Kulkarni, N.V., Karmakar, S., Sahoo, B., Banerjee, I., Chaudhari, P.S., Pasricha, R., Keune, W., (2008) Mater. Charact., 59, pp. 1215-1220. , 10.1016/j.matchar.2007.10.003Goulart, A.T., Filho D. F M, J., (1994) Hyperfine Interact., 83, pp. 451-455. , 10.1007/BF02074316Costa, G.M., Grave, E., Bowen, L.H., Vandenberghe, R.E., Bakker, P.M.A., (1994) Clay Clay Miner., 42, pp. 628-633. , 10.1346/CCMN.1994.042051
    corecore