4 research outputs found

    Impact of uncertainties in cardiac mechanics simulations

    Get PDF
    Modeling the mechanics of the heart have led to considerable insights, but it still representes a complex and demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as a hyperelastic, near-incompressible and orthotropic material, which are properties very challenging for the numerical solution of the model. In particular, near-incompressibility is known to cause numerical issues. In this work, some improvements were done in a cardiac mechanics simulator in order to be more efficient in the treatment of these numerical issues. With the improved solver for cardiac mechanics, it was possible to run problems with higher computational cost, such as sensitivity and uncertainty quantification analyses. This type of analysis has been a topic of scientific interest to assess the possibility of translating patient-specific simulations to clinical applications. However, personalized simulations are still challenging problems, because of the wide biological variability among patients, the uncertainties in experimental measurements and in the geometric representation of the heart. Due to these uncertainties in model inputs, it is difficult to define a reliable model that can be translated to clinical applications. Recent studies have focused on quantifying uncertainties for cardiac models in order to investigate how they can influence simulation results and, consequently, how we can make the models more reliable. Then, the present work also quantifies how uncertainties in the geometry can impact in quantities of interest from cardiac mechanics. The polynomial chaos approach was used to quantify uncertainties in geometries of the left ventricle during cardiac mechanics simulations. Initially, we performed some studies using simplified geometries during ventricular filling phase simulations and, after, we quantify uncertainties in more realistic geometries during the full cardiac cycle.A modelagem da mecânica cardíaca tem levado a descobertas interessantes, porém este continua sendo um problema complexo e de alta demanda computacional, especialmente em modelos eletromecânicos fortemente acoplados. O tecido cardíaco é geralmente considerado como um material hiperelástico, quase incompressível e ortotrópico, fatores que dificultam a solução numérica do modelo. Neste trabalho, melhorias foram realizadas em um simulador da mecânica cardíaca para tratar tais problemas numéricos de forma mais eficiente. Com este simulador mais eficiente foi possível tratar problemas que demandam de um maior esfoço computacional, como as análises de sensibilidade e quantificação de incertezas, onde várias simulações precisam ser realizadas. Este tipo de análise tem sido tópico de interesse científico para avaliar a possibilidade de usar simulações personalizadas por paciente em aplicações clínicas. Porém, estas simulações ainda são problemas desafiadores, por causa da grande variabilidade biológica entre pacientes e das incertezas em medidas experimentais e em representações geométricas do coração. Devido a estas incertezas em entradas do modelo, é difícil definir um modelo confiável que possa ser usado em aplicações clínicas. Estudos recentes têm se voltado à investigação de como estas incertezas podem influenciar no resultado de simulações e, consequentemente, descobrir como tornar os modelos mais confiáveis. Então, o presente trabalho quantifica incertezas nas geometrias usadas nas simulações para investigar como quantidades de interesse da mecânica cardíaca podem ser afetadas. A abordagem do polinômio caos é utilizada para a quantificação de incertezas em geometrias do ventrículo esquerdo submetidas a simulações da mecânica cardíaca. Inicialmente, as análises foram realizadas usando geometrias simplificadas em simulações da fase de preenchimento ventricular e, posteriormente, análises de quantificação de incertezas em geometrias mais realísticas submetidas a simulações do ciclo cardíaco completo são realizadas.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    Aceleração da Solução Numérica de Problemas Da Biomecânica Cardíaca Utilizando Métodos Multigrid da Biblioteca AmgX

    Get PDF
    The solution of linear systems plays a fundamental role in computer simulation software based on mathematical models to advance contemporary scientific research. Consequently, there is a growing demand for numerical methods and efficient implementations to face this challenge, particularly in the context of biomedical engineering where it is desired to use these simulators to create digital twins of patients and study certain pathological conditions. This work aims to explore and identify efficient techniques to solve linear systems related to the problem of cardiac biomechanics, thus accelerating simulations related to the intricate human cardiovascular system. To achieve this goal, several multigrid methods available in the AmgX library were selected, which were tested and analyzed in terms of their computational performance. As an initial step, problems based on Poisson's equation were solved considering simplified and complex geometries such as a cube and a human left ventricle. This study revealed distinct advantages associated with each method, depending on the complexity and format of the problems at hand.A resolução de sistemas lineares desempenha um papel fundamental em softwares de simulações computacionais baseadas em modelos matemáticos para o avanço de pesquisas científicas contemporâneas. Consequentemente, há uma demanda crescente por métodos numéricos e implementações eficientes para enfrentar esse desafio, em particular no contexto da engenharia biomédica onde deseja-se utilizar esses simuladores para criar gêmeos digitais de pacientes e estudar determinadas condições patológicas. Este trabalho tem como objetivo explorar e identificar técnicas eficientes para resolver sistemas lineares relacionados ao problema da biomecânica cardíaca, acelerando assim as simulações relacionadas ao intrincado sistema cardiovascular humano. Para atingir esse objetivo, foram selecionados vários métodos multigrid disponíveis na biblioteca AmgX, que foram testados e analisados em termos do seu desempenho computacional. Como um passo inicial, problemas baseados na equação de Poisson, foram resolvidos considerando geometrias simplificadas e complexas como, por exemplo, um cubo e um ventrículo humano. Esse estudo revelou vantagens distintas associadas a cada método, dependendo da complexidade e do formato dos problemas em questão

    Método de lattice Boltzmann para simulação da eletrofisiologia cardíaca em paralelo usando GPU

    Get PDF
    This work presents the lattice Boltzmann method (LBM) for computational simulations of the cardiac electrical activity using monodomain model. An optimized implementation of the lattice Boltzmann method is presented which uses a collision model with multiple relaxation parameters known as multiple relaxation time (MRT) in order to consider the anisotropy of the cardiac tissue. With focus on fast simulations of cardiac dynamics, due to the high level of parallelism present in the LBM, a GPU parallelization was performed and its performance was studied under regular and irregular three-dimensional domains. The results of our optimized LBM GPU implementation for cardiac simulations shown acceleration factors as high as 500x for the overall simulation and for the LBM a performance of 419 mega lattice updates per second (MLUPS) was achieved. With near real time simulations in a single computer equipped with a modern GPU these results show that the proposed framework is a promising approach for application in a clinical workflow.Este trabalho apresenta o método de lattice Boltzmann (MLB) para simulações computacionais da atividade elétrica cardíaca usando o modelo monodomínio. Uma implementação otimizada do método de lattice Boltzmann é apresentada, a qual usa um modelo de colisão com múltiplos parâmetros de relaxação conhecido como multiple relaxation time (MRT), para considerar a anisotropia do tecido cardíaco. Com foco em simulações rápidas da dinâmica cardíaca, devido ao alto grau de paralelismo presente no MLB, uma implementação que executa em uma unidade de processamento gráfico (GPU) foi realizada e seu desempenho foi estudado através de domínios tridimensionais regulares e irregulares. Os resultados da implementação para simulações cardíacas mostraram fatores de aceleração tão altos quanto 500x para a simulação global e para o MLB um desempenho de 419 mega lattice update per second (MLUPS) foi alcançado. Com tempos de execução próximos ao tempo real em um único computador equipado com uma GPU moderna, estes resultados mostram que este trabalho é uma proposta promissora para aplicação em ambiente clínico.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    Computational simulations of fluid flow and reaction-diffusion problems using the Lattice Boltzmann method

    No full text
    Computational modeling has been used for understanding complex phenomena in various areas recently. A mathematical model can be obtained with the knowledge from the physical and mathematical principles of the problem, which describes the phenomenon of interest. The model exact solution can be very di cult to find or may not exist. Then numerical methods are used for solving these equations in many engineering, biology and physics applications. The models numerical solution is extremely costly due to the high spatial and temporal resolution required. The numerical methods most commonly used to solve these problems are the finite element method (FEM) and finite volume method (FVM). An alternative is the Lattice Boltzmann Method (LBM), which have been increasingly used for simulation of complex problems in fluid dynamics. The objective of this work is to present the application of the Lattice Boltzmann method to problems of fluid dynamics and electrical activity of the heart as well as evaluate its performance in recent parallel computing environments.Recentemente a modelagem computacional vem sendo utilizada para o entendimento de fenômenos complexos nas mais diversas áreas. A partir dos princípios físicos, matemáticos e do conhecimento sobre o problema, chega-se a um modelo matemático, que descreve o fenômeno de interesse. A solução exata do modelo pode ser muito difícil de ser encontrada ou pode não existir. Então são usados métodos numéricos, para a resolução destas equações, como acontece em diversas aplicações em engenharia, biologia e física. A solução numérica da maioria dos modelos é extremamente custosa devido à alta resolução espacial e temporal exigida. Em geral, os métodos numéricos mais utilizados para a solução destes problemas são o método dos elementos finitos (MEF) e o método dos volumes finitos (MVF). Uma alternativa é o uso do método de Lattice Boltzmann (MLB), o qual tem sido cada vez mais utilizado para simulação de problemas complexos de dinâmica dos fluidos. O objetivo deste trabalho é apresentar a aplicação do método de Lattice Boltzmann aos problemas de dinâmica dos fluidos e atividade elétrica do coração, assim como avaliar o seu desempenho em ambientes de computação paralela recente
    corecore