8 research outputs found

    Assessing the potential of co-composting rose waste as a sustainable waste management strategy:Nutrient availability and disease control

    Get PDF
    The current limited usage of rose waste makes rose cultivation far from a sustainable circular industry. Unfavorable properties of horticultural waste such as the high lignin content of stems and high polyphenol levels in both flowers and leaves makes it difficult to re-use. These traits hamper an effective composting process and so far little studies have focused on optimizing this process. The aim of this study was to investigate the potential of (co-)composting rose waste with other on-farm available green wastes (tomato and kalanchoe) or mature rose compost to obtain an improved compost with high fertilizing capacity. In a small-scale composting system the evolution of five mixtures was closely monitored in terms of their physico-chemical parameters. The in-vitro disease suppressive capacity of mature rose compost was assessed. All mixtures resulted in stable and mature compost after six months showing industry standard suitable macro- and micro-nutrient concentrations. The matured compost showed a C/N below 10, a strong decrease in polyphenols of ≥70% and a good fertilizing capacity with an increase in cation exchange capacity since the start of ≥100%. These results demonstrate that the ligneous character of rose waste is not preventing an effective composting process. However, an increased duration of the maturation phase might be favored for optimal results. The addition of mature compost accelerated the composting process as shown by significantly increases in OM degradation rates. For the first time a high disease suppressive capacity against several common rose pathogens was shown for mature rose compost. Overall, this study showed the potential of (co-)composting rose waste as sustainable waste management strategy to further improve the circular economy waste-based objectives of the horticultural sector.</p

    Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study : A randomized controlled trial (NTR 5342)

    No full text
    Background: Success rates of assisted reproductive techniques (ART) are approximately 30%, with the most important limiting factor being embryo implantation. Mechanical endometrial injury, also called 'scratching', has been proposed to positively affect the chance of implantation after embryo transfer, but the currently available evidence is not yet conclusive. The primary aim of this study is to determine the effect of endometrial scratching prior to a second fresh in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle on live birth rates in women with a failed first IVF/ICSI cycle. Method: Multicenter randomized controlled trial in Dutch academic and non-academic hospitals. A total of 900 women will be included of whom half will undergo an endometrial scratch in the luteal phase of the cycle prior to controlled ovarian hyperstimulation using an endometrial biopsy catheter. The primary endpoint is the live birth rate after the 2nd fresh IVF/ICSI cycle. Secondary endpoints are costs, cumulative live birth rate (after the full 2nd IVF/ICSI cycle and over 12months of follow-up); clinical and ongoing pregnancy rate; multiple pregnancy rate; miscarriage rate and endometrial tissue parameters associated with implantation failure. Discussion: Multiple studies have been performed to investigate the effect of endometrial scratching on live birth rates in women undergoing IVF/ICSI cycles. Due to heterogeneity in both the method and population being scratched, it remains unclear which group of women will benefit from the procedure. The SCRaTCH trial proposed here aims to investigate the effect of endometrial scratching prior to controlled ovarian hyperstimulation in a large group of women undergoing a second IVF/ICSI cycle. Trial registration: NTR 5342 , registered July 31st, 2015. Protocol version: Version 4.10, January 4th, 2017
    corecore