313 research outputs found

    High-performance thin-layer chromatography assay for epoxide hydrolase activity and the determination of phenoxypropane-1,2-diols

    Full text link
    A simple, rapid and sensitive high-performance thin-layer chromatographic assay for the determination of epoxide hydrolase activity in rat liver homogenates is described. It is extended to the determination of a series of phenoxypropne-1,2-diols. The hydrolase assay has the advantages of using a readily available substrate, 2,3-epoxypropyl 4-methoxyphenyl ether, of multiple sample application, and of the simultaneous determination of reaction product (diol) as well as unchanged substrate (epoxide). The use of an internal standard, 4-nitroanisole, results in high sensitivity and good reproducibility of the proposed method. The limit of dial detection is 20 pmol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25891/1/0000454.pd

    Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells

    Get PDF
    The factor VIII gene, which is defective In hemophilia A, is located in the last megabase of the long arm of the X chromosome. Inversions due to intrachromosomal homologous recombination between mispaired copies of gene A located within intron 22 of the gene and about 500 kb telomeric to it account for nearly half of all cases of severe hemophilia A. We hypothesized that pairing of Xq with its homolog inhibits the Inversion process, and that, therefore, the event originates predominantly in male germ cells. In all 20 informative cases In which the inversion originated in a maternal grandparent, DNA polymorphism analysis determined that it occurred in the male germline. In addition, all but one of 50 mothers of sporadic cases due to an Inversion were carriers. Thus, these data support the hypothesis and Indicate that factor VIII gene inversions leading to severe hemophilia A occur almost exclusively In male germ cell

    Characteristics and outcome in patients with central nervous system involvement treated in European pediatric acute myeloid leukemia study groups

    Get PDF
    Background: There is no consensus on the treatment for pediatric patients with acute myeloid leukemia and initial central nervous system (CNS) involvement. Methods: To evaluate different CNS-directed treatment options (intrathecal [IT] therapy, CNS irradiation, hematopoietic stem cell transplantation [HSCT]), 261 patients (excluding acute promyelocytic leukemia) with initial CNS involvement treated in trials with similar intensive chemotherapy by four cooperative European study groups (1998–2013) were studied and compared with CNS-negative patients from the Berlin–Frankfurt–Münster group. Results: Patient characteristics in the different study groups were comparable. Young age, high white blood cell count, extramedullary involvement other than the CNS, monoblastic morphology, and inv(16) were associated with CNS involvement (each P < 0.0001). There were no major differences in outcome between the study groups. The cumulative incidence of relapse (CIR) regarding the CNS was higher in initially CNS-positive versus initially CNS-negative patients (all: 8 ± 2% vs. 3 ± 1%, P(Gray) = 0.001; isolated: 4 ± 1% vs. 1 ± 0%, P(Gray) = 0.03). However, global outcome of the CNS-positive cohort (overall survival, 64 ± 3%; event-free survival 48 ± 3%; and CIR 33% ± 3%) did not differ significantly from CNS-negative patients. Risk groups defined by cytogenetics were of likewise prognostic significance in CNS-positive and -negative patients. CNS treatment with cranial irradiation was not superior compared to IT therapy and systemic chemotherapy (± HSCT). Conclusion: Although CNS relapses occurred more frequently in initially CNS-positive patients, their global outcome was similar as in CNS-negative patients. Intensified IT therapy was heterogeneous; however, at least eight applications, preferably with triple IT chemotherapy, seem to be appropriate to accompany dose-intensive systemic chemotherapy

    Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma

    Get PDF
    T-cell acute lymphoblastic leukemia and lymphoma (T-ALL/T-LBL) are aggressive hematological malignancies that are currently treated with high dose chemotherapy. Over the last years, the search towards novel and less toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell intrinsic properties of the tumor cell. However, non cell autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous IL7 can increase the expression of the oncogenic kinase PIM1 in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared to bulk non-treated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL PDX cells, ultimately resulting in non-cell autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7 responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy

    Thrombin promotes diet-induced obesity through fibrin-driven inflammation

    Get PDF
    Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390–396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390–396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients
    • …
    corecore