15,846 research outputs found

    Non-stochastic behavior of atomic surface diffusion on Cu(111) at all temperatures

    Full text link
    Atomic diffusion is usually understood as a succession of random, independent displacements of an adatom over the surface's potential energy landscape. Nevertheless, an analysis of Molecular Dynamics simulations of self-diffusion on Cu(111) demonstrates the existence of different types of correlations in the atomic jumps at all temperatures. Thus, the atomic displacements cannot be correctly described in terms of a random walk model. This fact has a profound impact on the determination and interpretation of diffusion coefficients.Comment: 5 figure

    Learning roadmaps for Higher Education

    Get PDF
    An integrated platform for the support of teaching activities as been developed and deployed at the Aveiro Norte Polytechnic School of the University of Aveiro. In this paper we present an approach to Learning Roadmaps for Higher Education based on this platform. The aprend.e platform – Electronic Integrated System for Learning and Training - has at its core a Learning Management System with a number of plugins. It represents a new challenge for the University of Aveiro for higher education and is already being at its core is the concept of learning roadmaps that act upon two fundamental axes: education and learning. For the teachers, it aims at becoming a self-supporting tool that stimulates the organization and management of the course materials (lectures, presentations, multimedia content, and evaluation materials, amongst others). For the students, the learning roadmap aims at promoting self-study and supervised study, endowing the pupil with the capabilities to find the relevant information and to capture the concepts in the study materials. The outcome will be a stimulating learning process together with an organized management of those materials

    Novel Microscopic Mechanism of Intermixing during Growth on Soft Metallic Substrates

    Get PDF
    Generic computer simulations using empiric interatomic potentials suggest a new, collective mechanism that could be responsible for mixing at heteroepitaxial interfaces. Even if single adsorbate atoms diffuse by hopping on the substrate surface and do not mix at the terraces, two-dimensional islands formed by nucleation may become unstable above a certain critical size and explode upwards forming clusters of several atomic layers. This process is accompanied by strong distortions of the underlying atomic layers, and on soft materials it can result in surface etching and incorporation of substrate atoms into the islands.Fil: Gomez, Liliana Maria. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Slutzky, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferron, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: de la Figuera, J.. Sandia National Laboratories; Estados UnidosFil: Camarero, J.. Universidad Autónoma de Madrid; EspañaFil: Vazquez de Parga, A.. Universidad Autónoma de Madrid; EspañaFil: de Miguel, J.J.. Universidad Autónoma de Madrid; EspañaFil: Miranda, R.. Universidad Autónoma de Madrid; Españ

    An interior-point method for mpecs based on strictly feasible relaxations.

    Get PDF
    An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primaldual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation scheme preserves the nonempty strict feasibility of each subproblem even in the limit. Local and superlinear convergence of the algorithm is proved even with a less restrictive strict complementarity condition than the standard one. Moreover, mechanisms for inducing global convergence in practice are proposed. Numerical results on the MacMPEC test problem set demonstrate the fast-local convergence properties of the algorithm

    TRAIL and Cancer Immunotherapy: Take a Walk on the Short Side

    Get PDF
    Recent work shows that TRAILshort, a membrane-bound short form of TRAIL, is expressed by human cancer cells and protects them from TRAIL-induced cell death. AmAbthat selectively targets TRAILshort enhances cancer susceptibility to TRAIL and increases the efficacy of autologous CD8(+) T cells in ex vivo primary tumors

    The U(1) Lattice Gauge Theory Universally Connects All Classical Models with Continuous Variables, Including Background Gravity

    Get PDF
    We show that the partition function of many classical models with continuous degrees of freedom, e.g. abelian lattice gauge theories and statistical mechanical models, can be written as the partition function of an (enlarged) four-dimensional lattice gauge theory (LGT) with gauge group U(1). This result is very general that it includes models in different dimensions with different symmetries. In particular, we show that a U(1) LGT defined in a curved spacetime can be mapped to a U(1) LGT with a flat background metric. The result is achieved by expressing the U(1) LGT partition function as an inner product between two quantum states.Comment: Published version, 31 pages, 12 figures; references update
    corecore