281 research outputs found

    Razmišljanja

    Get PDF

    Razmišljanja

    Get PDF

    Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species

    Get PDF
    Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei – a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei

    Lippia origanoides essential oil possesses anticonvulsant effect in pentylenetetrazol-induced seizures in rats: a behavioral, electroencephalographic, and electromyographic study

    Get PDF
    Epilepsy is a neuronal disorder characterized by abnormal excitability of the brain, leading to seizures. Only around 66% of the epileptic patients respond adequately to treatment with existing conventional anticonvulsants, making it necessary to investigate new antiepileptic drugs. The growing research into natural products and their pharmacological properties has become increasingly promising, particularly in the study of essential oils, which are already widely used in popular culture for treating various diseases. The present study evaluated the anticonvulsant effects of Lippia origanoides essential oil (LOEO) (100 mg/kg i. p.) compared to diazepam (DZP) (5 mg/kg i. p.), and the combined administration of these two substances to control convulsions induced by pentylenetetrazol (PTZ) (60 mg/kg i. p.). This evaluation was carried out using 108 male Wistar rats, which were divided into two experiments. Experiment 1–Behavioral assessment: The animals were divided into 4 groups (n = 9): (I) saline solution + PTZ, (II) DZP + PTZ, (III) LOEO + PTZ, (IV) LOEO + DZP + PTZ. The convulsive behavior was induced 30 min after the administration of the tested anticonvulsant drugs, and the observation period lasted 30 min. Experiment 2- Electrocorticographic evaluation: The animals were divided into 8 groups (n = 9): (I) saline solution; (II) LOEO; (III) DZP; (IV) LOEO + DZP; (V) saline + PTZ, (VI) DZP + PTZ (VII) LOEO + PTZ, (VIII) LOEO + DZP + PTZ. PTZ was administered 30 min after LOEO and DZP treatments and electrocorticographic activity was assessed for 15 min. For the control groups, electromyographic recordings were performed in the 10th intercostal space to assess respiratory rate. The results demonstrated that Lippia origanoides essential oil increased the latency time for the appearance of isolated clonic seizures without loss of the postural reflex. The animals had a more intense decrease in respiratory rate when combined with LOEO + DZP. EEG recordings showed a reduction in firing amplitude in the LOEO-treated groups. The combining treatment with diazepam resulted in increased anticonvulsant effects. Therefore, treatment with Lippia origanoides essential oil was effective in controlling seizures, and its combination with diazepam may represent a future option for the treatment of difficult-to-control seizures

    Indacenodibenzothiophenes: Synthesis, Optoelectronic Properties and Materials Applications of Molecules with Strong Antiaromatic Character

    Get PDF
    Indeno[1,2-b]fluorenes (IFs), while containing 4n π-electrons, are best described as two aromatic benzene rings fused to a weakly paratropic s-indacene core. In this study, we find that replacement of the outer benzene rings of an IF with benzothiophenes allows the antiaromaticity of the central s-indacene to strongly reassert itself. Herein we report a combined synthetic, computational, structural, and materials study of anti- and syn-indacenodibenzothiophenes (IDBTs). We have developed an efficient and scalable synthesis for preparation of a series of aryl- and ethynyl-substituted IDBTs. NICS-XY scans and ACID calculations reveal an increasingly antiaromatic core from [1,2-b]IF to anti-IDBT, with syn-IDBT being nearly as antiaromatic as the parent s-indacene. As an initial evaluation, the intermolecular electronic couplings and electronic band structure of a diethynyl anti-IDBT derivative reveal the potential for hole and/or electron transport. OFETs constructed using this molecule show the highest hole mobilities yet achieved for a fully conjugated IF derivative
    corecore