21,601 research outputs found

    Influence of Environmental Risk on the Financial Structure of Oil and Gas Projects

    Get PDF
    The risk profile of a Build-Operate-Transfer (BOT) project affects its debt service ability. In particular, the total risk profile of an oil and gas project is heavily influenced by its environmental risk exposure. However, this risk is often not given a considerable weight in risk analysis, resulting in underestimation of project's total riskiness and consequent overestimation of the debt capacity. This study is aimed at understanding the dependence of the capital structure of oil and gas BOT projects on environmental risk exposure and proposes a methodology for incorporating such important risk into the total risk rating process to determine the debt leverage. As a result, it is shown that integrating environmental risks into the risk score of a project yields higher values of risk exposure, which may lead to a lower debt-to-equity ratio

    The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Get PDF
    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak-frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy-dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high frequency (5-20 Hz) fractional rms at high energies, with less than 10 percent scatter. This reinforces previous claims suggesting that the high frequency PSD solely scales with BH mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ~30 percent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Tracing the reverberation lag in the hard state of black hole X-ray binaries

    Get PDF
    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous RXTE observations to obtain broad-band energy coverage of both the disc and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability signal-to-noise ratio (e.g. typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law component, already well-known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disc variability. At low-frequencies (long time scales) the disc component always leads the power law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high-frequencies (short time scales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disc-fraction increase. This suggests that the distance between the X-ray source and the region of the optically-thick disc where reprocessing occurs, gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disc truncation.Comment: 15 pages, 9 figures, 2 tables, accepted for publication in Ap

    Vibrations of free and embedded anisotropic elastic spheres: Application to low-frequency Raman scattering of silicon nanoparticles in silica

    Full text link
    Vibrational mode frequencies and damping are calculated for an elastic sphere embedded in an infinite, homogeneous, isotropic elastic medium. Anisotropic elasticity of the sphere significantly shifts the frequencies in comparison to simplified calculations that assume isotropy. New low frequency Raman light scattering data are presented for silicon spheres grown in a SiO2 glass matrix. Principal features of the Raman spectrum are not correctly described by a simple model of the nanoparticle as a free, isotropic sphere, but require both matrix effects and the anisotropy of the silicon to be taken into account. Libration, not vibration, is the dominant mechanism

    Statistics of the fractional polarisation of extragalactic dusty sources in Planck HFI maps

    Full text link
    We estimate the average fractional polarisation at 143, 217 and 353 GHz of a sample of 4697 extragalactic dusty sources by applying stacking technique. The sample is selected from the second version of the Planck Catalogue of Compact Sources at 857 GHz, avoiding the region inside the Planck Galactic mask (fsky ~ 60 per cent). We recover values for the mean fractional polarisation at 217 and 353 GHz of (3.10 \pm 0.75) per cent and (3.65 \pm 0.66) per cent, respectively, whereas at 143 GHz we give a tentative value of (3.52 \pm 2.48) per cent. We discuss the possible origin of the measured polarisation, comparing our new estimates with those previously obtained from a sample of radio sources. We test different distribution functions and we conclude that the fractional polarisation of dusty sources is well described by a log-normal distribution, as determined in the radio band studies. For this distribution we estimate {\mu}_{217GHz} = 0.3 \pm 0.5 (that would correspond to a median fractional polarisation of {\Pi}_{med} = (1.3 \pm 0.7) per cent) and {\mu}_{353GHz} = 0.7 \pm 0.4 ({\Pi}_{med} = (2.0 \pm 0.8) per cent), {\sigma}_{217GHz} = 1.3 \pm 0.2 and {\sigma}_{353GHz} = 1.1 \pm 0.2. With these values we estimate the source number counts in polarisation and the contribution given by these sources to the CMB B-mode angular power spectrum at 217, 353, 600 and 800 GHz. We conclude that extragalactic dusty sources might be an important contaminant for the primordial B-mode at frequencies > 217 GHz.Comment: arXiv admin note: text overlap with arXiv:1703.0995

    The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre

    Get PDF
    We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Swimmers in thin films: from swarming to hydrodynamic instabilities

    Full text link
    We investigate theoretically the collective dynamics of a suspension of low Reynolds number swimmers that are confined to two dimensions by a thin fluid film. Our model swimmer is characterized by internal degrees of freedom which locally exert active stresses (force dipoles or quadrupoles) on the fluid. We find that hydrodynamic interactions mediated by the film can give rise to spontaneous continuous symmetry breaking (swarming), to states with either polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged dynamics are enough to determine the leading contributions to the collective behaviour. In contrast, for quadrupolar swimmers, our analysis shows that detailed features of the internal dynamics play an important role in determining the bulk behaviour. In the broken symmetry phases, we investigate fluctuations of hydrodynamic variables of the system and find that these destabilize order. Interestingly, this instability is not generic and depends on length-scale.Comment: 4 pages, 2 figures, references added, typos corrected, new introductio

    Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst

    Get PDF
    We report on the evolution of the X-ray emission of the accreting neutron star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent outburst in 2015-2017. We detected 60 absorption lines during the soft state (of which 21 at more than 3 σ\sigma), that disappeared in the hard state (e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely part of the accretion disc atmosphere. The bulk of the absorption features can be reproduced by a high column density (log(NH/cm−2)∌23.5log(N_H/cm^{-2})\sim23.5) of highly ionised (log(Ο/erg cm s−1)∌3.8log(\xi/erg~cm~s^{-1})\sim3.8) plasma. Its disappearance during the hard state is likely the consequence of a thermal photo-ionisation instability. MXB 1659-298's continuum emission can be described by the sum of an absorbed disk black body and its Comptonised emission, plus a black body component. The observed spectral evolution with state is in line with that typically observed in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe Kα\alpha disk-line is required during the soft state. We also tentatively detect the Fe xxii doublet, whose ratio suggests an electron density of the absorber of ne>1013cm−3n_e>10^{13} cm^{-3}, hence, the absorber is likely located at <7×104rg<7\times10^4 r_g from the illuminating source, well inside the Compton and outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB showcasing intense Fe xxv and Fe xxvi absorption during the soft state that disappears during the hard state.Comment: MNRAS in pres
    • 

    corecore