14 research outputs found

    Motility and phototaxis of Gonium, the simplest differentiated colonial alga.

    Get PDF
    Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics

    Stress-Induced Dinoflagellate Bioluminescence at the Single Cell Level.

    Get PDF
    One of the characteristic features of many marine dinoflagellates is their bioluminescence, which lights up nighttime breaking waves or seawater sliced by a ship's prow. While the internal biochemistry of light production by these microorganisms is well established, the manner by which fluid shear or mechanical forces trigger bioluminescence is still poorly understood. We report controlled measurements of the relation between mechanical stress and light production at the single cell level, using high-speed imaging of micropipette-held cells of the marine dinoflagellate Pyrocystis lunula subjected to localized fluid flows or direct indentation. We find a viscoelastic response in which light intensity depends on both the amplitude and rate of deformation, consistent with the action of stretch-activated ion channels. A phenomenological model captures the experimental observations.Gordon and Betty Moore Foundation Schlumberger Chair Fund French government funding (ANR

    Functional textures : aerophilicity, propulsion and specific friction

    No full text
    La thĂšse porte sur l’étude de l’influence des textures sur le mouillage et la propulsion. Trois situations ont Ă©tĂ© considĂ©rĂ©es, selon la taille des textures utilisĂ©es.Des textures nanomĂ©triques hydrophobes permettent d’obtenir des surfaces aĂ©rophiles. Lorsque ces surfaces sont immergĂ©es dans un bain, elles restent recouvertes d’un fin film d’air et ouvrent toute une classe de nouveaux problĂšmes de mouillage, oĂč les interfaces gaz – liquide sont inversĂ©es par rapport aux situations traditionnelles. Nous avons dĂ©crit l’étalement d’une bulle d’air sur une surface aĂ©rophile, la dĂ©pression capillaire ou encore la dynamique de bulles sur des fils.En situation de lĂ©vitation, des textures de l’ordre du millimĂštre permettent de rediriger efficacement le flux d’air qui sĂ©pare un objet de son support. L’écoulement Ă©tant contrĂŽlĂ©, une direction privilĂ©giĂ©e peut ĂȘtre choisie et l’objet se trouve alors efficacement propulsĂ©. Selon l’emplacement des textures, un entrainement visqueux ou une propulsion par effet fusĂ©e peuvent ĂȘtre observĂ©s.Sur des crĂ©neaux millimĂ©triques recouverts de nanotextures hydrophobes, l’eau est en situation non-mouillante. Il suffit d’une toute petite inclinaison de la surface pour qu’une goutte dĂ©vale, et elle atteint rapidement des vitesses importantes puisque la friction est trĂšs faible. La prĂ©sence des macrotextures sur la surface permet de ralentir considĂ©rablement la goutte : l’étude a portĂ© sur l’optimisation du contrĂŽle d’une goutte, Ă©ventuellement visqueuse.This thesis deals with the influence of textures on wetting and propulsion. Three situations have been considered, depending on the texture size.Aerophilic surfaces can be obtained with hydrophobic nanometric structures. When immerged in a liquid bath, these surfaces remain covered by a thin plastron of air. This oppens a new class of problems where gas – liquid interfaces are exchanged, compared to usual studies. We described the spreading of an air bulle over an aerophilic surface, capillary depression and the dynamics of a bubble on a wire.Millimetric sutructures allow an efficient redirection of the air cushion between a levitating object and its substrate. Because the flux is controlled, a specific direction can appear, and the object is efficiently propelled. Depending on the textures location, viscous entrainement or rocket effect can be the propulsive mechanism.Hydrophobic nanotextures are used to generate non-wetting situation of water. A tiny angle of tilt of the surface is enough to see a drop mouving; its velocity is high because of the low friction. Macrotextures, as millimetric crennels slow down very efficiently the drop: the study optimized the control of the drop (possibly viscous) motion

    Textures fonctionnelles : aérophilie, propulsion et friction spéciale

    No full text
    This thesis deals with the influence of textures on wetting and propulsion. Three situations have been considered, depending on the texture size.Aerophilic surfaces can be obtained with hydrophobic nanometric structures. When immerged in a liquid bath, these surfaces remain covered by a thin plastron of air. This oppens a new class of problems where gas – liquid interfaces are exchanged, compared to usual studies. We described the spreading of an air bulle over an aerophilic surface, capillary depression and the dynamics of a bubble on a wire.Millimetric sutructures allow an efficient redirection of the air cushion between a levitating object and its substrate. Because the flux is controlled, a specific direction can appear, and the object is efficiently propelled. Depending on the textures location, viscous entrainement or rocket effect can be the propulsive mechanism.Hydrophobic nanotextures are used to generate non-wetting situation of water. A tiny angle of tilt of the surface is enough to see a drop mouving; its velocity is high because of the low friction. Macrotextures, as millimetric crennels slow down very efficiently the drop: the study optimized the control of the drop (possibly viscous) motion.La thĂšse porte sur l’étude de l’influence des textures sur le mouillage et la propulsion. Trois situations ont Ă©tĂ© considĂ©rĂ©es, selon la taille des textures utilisĂ©es.Des textures nanomĂ©triques hydrophobes permettent d’obtenir des surfaces aĂ©rophiles. Lorsque ces surfaces sont immergĂ©es dans un bain, elles restent recouvertes d’un fin film d’air et ouvrent toute une classe de nouveaux problĂšmes de mouillage, oĂč les interfaces gaz – liquide sont inversĂ©es par rapport aux situations traditionnelles. Nous avons dĂ©crit l’étalement d’une bulle d’air sur une surface aĂ©rophile, la dĂ©pression capillaire ou encore la dynamique de bulles sur des fils.En situation de lĂ©vitation, des textures de l’ordre du millimĂštre permettent de rediriger efficacement le flux d’air qui sĂ©pare un objet de son support. L’écoulement Ă©tant contrĂŽlĂ©, une direction privilĂ©giĂ©e peut ĂȘtre choisie et l’objet se trouve alors efficacement propulsĂ©. Selon l’emplacement des textures, un entrainement visqueux ou une propulsion par effet fusĂ©e peuvent ĂȘtre observĂ©s.Sur des crĂ©neaux millimĂ©triques recouverts de nanotextures hydrophobes, l’eau est en situation non-mouillante. Il suffit d’une toute petite inclinaison de la surface pour qu’une goutte dĂ©vale, et elle atteint rapidement des vitesses importantes puisque la friction est trĂšs faible. La prĂ©sence des macrotextures sur la surface permet de ralentir considĂ©rablement la goutte : l’étude a portĂ© sur l’optimisation du contrĂŽle d’une goutte, Ă©ventuellement visqueuse

    Capillary descent

    No full text
    International audienc

    Air entrainment during impact of droplets on liquid surfaces

    No full text
    We study drop impact on a deep pool of the same fluid, with an emphasis on the air layer trapped under the droplets from its formation to its rupture. The penetration velocity of the air layer at a very short time scale prior to its rupture is shown, using an energy argument and experimental verification, to be one-half of the impact velocity. We then deduce the dependence of the rupture position on the liquid viscosity and the impact velocity. We show that the volume of the resulting air bubbles can be related to both those resulting from droplets impacting on solid surfaces and those resulting from rigid spheres impacting on liquid surfaces

    Air-levitated platelets: from take off to motion

    No full text
    International audienc

    Tightrope bubbles

    No full text
    International audienceDroplets moving along fibers have a mobility limited by viscous dissipation. Here, we discuss the opposite situation of bubbles moving on threads immersed in water. Contrasting with drops, the mobility is generally fixed by a visco-inertial skin friction, which allows them to move at much larger velocity than reported in the dual situation. We conclude by establishing how the friction becomes purely viscous when increasing the bath viscosity
    corecore