134 research outputs found

    Nonmyeloablative Peripheral Blood Haploidentical Stem Cell Transplantation for Refractory Severe Aplastic Anemia

    Get PDF
    New transplant approaches are urgently needed for patients with refractory severe aplastic anemia (SAA) who lack a matched sibling or unrelated donor (UD) or who have failed UD or cord blood transplant. Patients with refractory SAA are at risk of later clonal evolution to myelodysplastic syndrome and acute leukemia. We report our pilot findings with haploidentical hematopoietic stem cell transplantation (haploHSCT) using uniform reduced-intensity conditioning with postgraft high-dose cyclophosphamide in 8 patients with refractory SAA or patients who rejected a prior UD or cord blood transplant. Six of 8 patients engrafted. Graft failure was associated with donor-directed HLA antibodies, despite intensive pre-HSCT desensitization with plasma exchange and rituximab. There was only 1 case of grade II skin graft-versus-host disease. We show that haploHSCT can successfully rescue refractory SAA patients who lack donor-directed HLA antibodies but not in the presence of donor-directed HLA antibodies. This novel protocol for haploHSCT for SAA has been adopted by the European Group for Blood and Marrow Transplantation Severe Aplastic Anaemia Working Party for a future noninterventional, observational study to further evaluate its efficacy

    Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells

    Get PDF
    Chronic myeloid leukaemia (CML) is maintained by a rare population of tyrosine kinase inhibitor (TKI)-insensitive malignant stem cells. Our long-term aim is to find a BcrAbl-independent drug that can be combined with a TKI to improve overall disease response in chronic-phase CML. Omacetaxine mepesuccinate, a first in class cetaxine, has been evaluated by clinical trials in TKI-insensitive/resistant CML. Omacetaxine inhibits synthesis of anti-apoptotic proteins of the Bcl-2 family, including (myeloid cell leukaemia) Mcl-1, leading to cell death. Omacetaxine effectively induced apoptosis in primary CML stem cells (CD34<sup>+</sup>38<sup>lo</sup>) by downregulation of Mcl-1 protein. In contrast to our previous findings with TKIs, omacetaxine did not accumulate undivided cells <i>in vitro</i>. Furthermore, the functionality of surviving stem cells following omacetaxine exposure was significantly reduced in a dose-dependant manner, as determined by colony forming cell and the more stringent long-term culture initiating cell colony assays. This stem cell-directed activity was not limited to CML stem cells as both normal and non-CML CD34<sup>+</sup> cells were sensitive to inhibition. Thus, although omacetaxine is not leukaemia stem cell specific, its ability to induce apoptosis of leukaemic stem cells distinguishes it from TKIs and creates the potential for a curative strategy for persistent disease

    Advances in the treatment of chronic myeloid leukemia

    Get PDF
    Although imatinib is firmly established as an effective therapy for newly diagnosed patients with chronic myeloid leukemia (CML), the field continues to advance on several fronts. In this minireview we cover recent results of second generation tyrosine kinase inhibitors in newly diagnosed patients, investigate the state of strategies to discontinue therapy and report on new small molecule inhibitors to tackle resistant disease, focusing on agents that target the T315I mutant of BCR-ABL. As a result of these advances, standard of care in frontline therapy has started to gravitate toward dasatinib and nilotinib, although more observation is needed to fully support this. Stopping therapy altogether remains a matter of clinical trials, and more must be learned about the mechanisms underlying the persistence of leukemic cells with treatment. However, there is good news for patients with the T315I mutation, as effective drugs such as ponatinib are on their way to regulatory approval. Despite these promising data, accelerated or blastic phase disease remains a challenge, possibly due to BCR-ABL-independent resistance

    The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib

    Get PDF
    Tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib are indicated as second-line treatment for chronic myeloid leukemia resistant or intolerant to the current first-line TKI imatinib. These are agents are well tolerated, but potent and as such should be monitored for potentially serious side-effects like fluid retention and pleural effusions. Here we present key clinical trial data and safety considerations for all FDA approved TKIs in context for effective management of fluid retention and pleural effusions. Altering the dasatinib regimen from 70 mg twice daily to 100 mg daily reduces the risk of pleural effusion for patients taking dasatinib. Should pleural effusion develop, dasatinib should be interrupted until the condition resolves. Patients with a history of pleural effusion risk factors should be monitored closely while taking dasatinib. Patients receiving imatinib and nilotinib are not without risk of fluid retention. All patients should also be educated to recognize and report key symptoms of fluid retention or pleural effusion. Pleural effusions are generally managed by dose interruption/reduction and other supportive measures in patients with chronic myeloid leukemia receiving dasatinib therapy

    Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia

    Get PDF
    Purpose Tyrosine kinase inhibitors (TKIs) have well-characterized immunomodulatory effects on T and NK cells, but the effects on the humoral immunity are less well known. In this project, we studied TKI-induced changes in B cell-mediated immunity. Methods We collected peripheral blood (PB) and bone marrow (BM) samples from chronic myeloid leukemia (CML) patients before and during first-line imatinib (n = 20), dasatinib (n = 16), nilotinib (n = 8), and bosutinib (n = 12) treatment. Plasma immunoglobulin levels were measured, and different B cell populations in PB and BM were analyzed with flow cytometry. Results Imatinib treatment decreased plasma IgA and IgG levels, while dasatinib reduced IgM levels. At diagnosis, the proportion of patients with IgA, IgG, and IgM levels below the lower limit of normal (LLN) was 0, 11, and 6% of all CML patients, respectively, whereas at 12 months timepoint the proportions were 6% (p = 0.13), 31% (p = 0.042) and 28% (p = 0.0078). Lower initial Ig levels predisposed to the development of hypogammaglobulinemia during TKI therapy. Decreased Ig levels in imatinibtreated patients were associated with higher percentages of immature BM B cells. The patients, who had low Ig levels during the TKI therapy, had significantly more frequent minor infections during the follow-up compared with the patients with normal Ig values (33% vs. 3%, p = 0.0016). No severe infections were reported, except recurrent upper respiratory tract infections in one imatinib-treated patient, who developed severe hypogammaglobulinemia. Conclusions TKI treatment decreases plasma Ig levels, which should be measured in patients with recurrent infections.Peer reviewe
    corecore