1,224 research outputs found

    Electrodynamics of Fulde-Ferrell-Larkin-Ovchinnikov superconducting state

    Full text link
    We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid currents mainly come from paramagnetic interaction of electron spins with local magnetic field, and not from kinetic energy response to the external field as usual. We find that the stable vortex lattice keeps its triangular structure as in usual Abrikosov mixed state, while the internal magnetic field acquires components perpendicular to applied magnetic field. Experimental possibilities related to this prediction are discussed.Comment: 5 pages, 1 figur

    Vortex core deformation and stepper motor behavior in a superconducting ratchet

    Get PDF
    We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e. the so called stepper motor behavior. Strikingly, in the more conventional low frequency response a transition takes place from an Abrikosov vortex rectifier to a phase slip line rectifier. This transition is characterized by a strong increase in the rectified voltage and the appearance of a pronounced hysteretic behavior.Comment: 4 pages, 4 figure

    Discrete transverse superconducting modes in nano-cylinders

    Full text link
    Spatial variation in the superconducting order parameter becomes significant when the system is confined at dimensions well below the typical superconducting coherence length. Motivated by recent experimental success in growing single-crystal metallic nanorods, we study quantum confinement effects on superconductivity in a cylindrical nanowire in the clean limit. For large diameters, where the transverse level spacing is smaller than superconducting order parameter, the usual approximations of Ginzburg-Landau theory are recovered. However, under external magnetic field the order parameter develops a spatial variation much stronger than that predicted by Ginzburg-Landau theory, and gapless superconductivity is obtained above a certain field strength. At small diameters, the discrete nature of the transverse modes produces significant spatial variations in the order parameter with increased average magnitude and multiple shoulders in the magnetic response.Comment: 10 pages, 8 figure

    FFLO state in thin superconducting films

    Full text link
    We present the analysis of the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state in thin superconducting films in the parallel magnetic field. For the tetragonal crystal symmetry (relevant to CeCoIn5_{5} - the most probable candidate for the FFLO state formation) we predict a very peculiar in-plane angular dependence of the FFLO critical field due to the orbital effect. In the uniform superconducting state the critical field should be isotropic. The magnetic field pins also the direction of the FFLO modulation permitting thus to study the critical current anisotropy. Our calculations reveal a strong critical current anisotropy in the FFLO state in sharp contrast with the usual superconducting state. The predicted characteristic anisotropies of the critical field and critical current may provide an unambiguous probe of the FFLO phase formation.Comment: 7 pages, 2 figures, to be published in Europhys. Let

    Magnetic impurities in a superconductor: Effect of domain walls and interference

    Full text link
    We consider the effect of magnetic impurities, modeled by classical spins, in a conventional superconductor. We study their effect on the quasiparticles, specifically on the spin density and local density of states (LDOS). As previously emphasized, the impurities induce multiple scatterings of the quasiparticle wave functions leading to complex interference phenomena. Also, the impurities induce quantum phase transitions in the many-body system. Previous authors studied the effect of either a small number of impurities (from one to three) or a finite concentration of impurities, typically in a disordered distribution. In this work we assume a regular set of spins distributed inside the superconductor in such a way that the spins are oriented, forming different types of domain walls, assumed stable. This situation may be particularly interesting in the context of spin transfer due to polarized currents traversing the material.Comment: 26 pages, 26 figures (72 in total

    Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4

    Full text link
    Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase coexistence between semiconducting and metallic (superconducting) regions (filaments or droplets) in a wide range of pressure. In this regime, the superconducting upper critical field for H parallel to both c* and b' axes present a linear part at low fields followed by a divergence above a cross-over field. This cross-over corresponds to the 3D-2D decoupling transition expected in filamentary or granular superconductors. The sharpness of the transition also demonstrates that all filaments are of similar sizes and self organize in a very ordered way. The distance between the filaments and their cross-section are estimated.Comment: 4 pages, 4 figure

    Fulde-Ferrell-Larkin-Ovchinnikov states in one-dimensional spin-polarized ultracold atomic Fermi gases

    Get PDF
    We present a systematic study of quantum phases in a one-dimensional spin-polarized Fermi gas. Three comparative theoretical methods are used to explore the phase diagram at zero temperature: the mean-field theory with either an order parameter in a single-plane-wave form or a self-consistently determined order parameter using the Bogoliubov-de Gennes equations, as well as the exact soluble Bethe ansatz method. We find that a spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov phase, which lies between the fully paired BCS state and the fully polarized normal state, dominates most of the phase diagram of a uniform gas. The phase transition from the BCS state to the Fulde-Ferrell-Larkin-Ovchinnikov phase is of second order, and therefore there are no phase separation states in one-dimensional homogeneous polarized gases. This is in sharp contrast to the three-dimensional situation, where a phase separation regime is predicted to occupy a very large space in the phase diagram. We conjecture that the prediction of the dominance of the phase separation phases in three dimension could be an artifact of the non-self-consistent mean-field approximation, which is heavily used in the study of three-dimensional polarized Fermi gases. We consider also the effect of a harmonic trapping potential on the phase diagram, and find that in this case the trap generally leads to phase separation, in accord with the experimental observations for a trapped gas in three dimension. We finally investigate the local fermionic density of states of the Fulde-Ferrell-Larkin-Ovchinnikov ansatz. A two-energy-gap structure is shown up, which could be used as an experimental probe of the Fulde-Ferrell-Larkin-Ovchinnikov states.Comment: 22 papes, 19 figure

    Nematic-Isotropic Transition with Quenched Disorder

    Full text link
    Nematic elastomers do not show the discontinuous, first-order, phase transition that the Landau-De Gennes mean field theory predicts for a quadrupolar ordering in 3D. We attribute this behavior to the presence of network crosslinks, which act as sources of quenched orientational disorder. We show that the addition of weak random anisotropy results in a singular renormalization of the Landau-De Gennes expression, adding an energy term proportional to the inverse quartic power of order parameter Q. This reduces the first-order discontinuity in Q. For sufficiently high disorder strength the jump disappears altogether and the phase transition becomes continuous, in some ways resembling the supercritical transitions in external field.Comment: 12 pages, 4 figures, to be published on PR

    Supercurrent induced domain wall motion

    Full text link
    We study the dynamics of a magnetic domain wall, inserted in, or juxtaposed to, a conventional superconductor, via the passage of a spin polarized current through a FSF junction. Solving the Landau-Lifshitz-Gilbert equation of motion for the magnetic moments we calculate the velocity of the domain wall and compare it with the case of a FNF junction. We find that in several regimes the domain wall velocity is larger when it is driven by a supercurrent.Comment: 10 pages, 8 figure

    Exploring the Structure of Distant Galaxies with Adaptive Optics on the Keck-II Telescope

    Get PDF
    We report on the first observation of cosmologically distant field galaxies with an high order Adaptive Optics (AO) system on an 8-10 meter class telescope. Two galaxies were observed at 1.6 microns at an angular resolution as high as 50 milliarcsec using the AO system on the Keck-II telescope. Radial profiles of both objects are consistent with those of local spiral galaxies and are decomposed into a classic exponential disk and a central bulge. A star-forming cluster or companion galaxy as well as a compact core are detected in one of the galaxies at a redshift of 0.37+/-0.05. We discuss possible explanations for the core including a small bulge, a nuclear starburst, or an active nucleus. The same galaxy shows a peak disk surface brightness that is brighter than local disks of comparable size. These observations demonstrate the power of AO to reveal details of the morphology of distant faint galaxies and to explore galaxy evolution.Comment: 5 pages, Latex, 3 figures. Accepted for publication in P.A.S.
    • …
    corecore