10 research outputs found

    Species selection and assessment of eco-engineering effects of seedlings for biogeomorphological landscape experiments

    No full text
    Landscape experiments of fluvial environments such as rivers and deltas are often conducted with live seedlings to investigate effects of biogeomorphological interactions on morphology and stratigraphy. However, such experiments have been limited to a single species, usually alfalfa (Medicago sativa), whereas important environments in nature have many different vegetation types and eco-engineering effects. Landscape experimentation would therefore benefit from a larger choice of tested plant species. For the purpose of experimental design our objective was to identify fast-germinating and fast-growing species and determine their sensitivity to flow conditions during and after settling, their maximum growth, hydraulic resistance and added bank strength. We tested germination time and seedling growth rate of 18 candidate species with readily available seeds that are fast growing and occur at waterlines, plus Medicago sativa as a control. We selected five species that germinate and develop within days and measured properties and eco-engineering effects depending on plant age and density, targeting typical experimental conditions of 0–0.3 m/s flow velocity and 0–30 mm water depth. Tested eco-engineering effects include bank strength and flow resistance. We found that Rumex hydrolapathum can represent riparian trees. The much smaller Veronica beccabunga and Lotus pedunculatus can represent grass and saltmarsh species as they grow in dense patches with high flow resistance but are readily erodible. Sorghum bicolor grows into tall, straight shoots, which add significantly to bank strength, but adds little flow resistance and may represent sparse hardwood trees. Medicago sativa also grows densely under water, suggesting a use for mangroves and perhaps peat. In stronger and deeper flows the application of all species changes accordingly. These species can now be used in a range of landscape experiments to investigate combined effects on living landscape patterns and possible facilitation between species. The testing and treatment methodology can be applied to new species and other laboratory conditions.</p

    Species selection and assessment of eco-engineering effects of seedlings for biogeomorphological landscape experiments

    No full text
    Landscape experiments of fluvial environments such as rivers and deltas are often conducted with live seedlings to investigate effects of biogeomorphological interactions on morphology and stratigraphy. However, such experiments have been limited to a single species, usually alfalfa (Medicago sativa), whereas important environments in nature have many different vegetation types and eco-engineering effects. Landscape experimentation would therefore benefit from a larger choice of tested plant species. For the purpose of experimental design our objective was to identify fast-germinating and fast-growing species and determine their sensitivity to flow conditions during and after settling, their maximum growth, hydraulic resistance and added bank strength. We tested germination time and seedling growth rate of 18 candidate species with readily available seeds that are fast growing and occur at waterlines, plus Medicago sativa as a control. We selected five species that germinate and develop within days and measured properties and eco-engineering effects depending on plant age and density, targeting typical experimental conditions of 0–0.3 m/s flow velocity and 0–30 mm water depth. Tested eco-engineering effects include bank strength and flow resistance. We found that Rumex hydrolapathum can represent riparian trees. The much smaller Veronica beccabunga and Lotus pedunculatus can represent grass and saltmarsh species as they grow in dense patches with high flow resistance but are readily erodible. Sorghum bicolor grows into tall, straight shoots, which add significantly to bank strength, but adds little flow resistance and may represent sparse hardwood trees. Medicago sativa also grows densely under water, suggesting a use for mangroves and perhaps peat. In stronger and deeper flows the application of all species changes accordingly. These species can now be used in a range of landscape experiments to investigate combined effects on living landscape patterns and possible facilitation between species. The testing and treatment methodology can be applied to new species and other laboratory conditions

    Sample size requirements for riverbank macrolitter characterization

    No full text
    Anthropogenic litter is omnipresent in terrestrial and freshwater systems, and can have major economic and ecological impacts. Monitoring and modeling of anthropogenic litter comes with large uncertainties due to the wide variety of litter characteristics, including size, mass, and item type. It is unclear as to what the effect of sample set size is on the reliability and representativeness of litter item statistics. Reliable item statistics are needed to (1) improve monitoring strategies, (2) parameterize litter in transport models, and (3) convert litter counts to mass for stock and flux calculations. In this paper, we quantify sample set size requirement for riverbank litter characterization, using a database of more than 14,000 macrolitter items (>0.5 cm), sampled for 1 year at eight riverbank locations along the Dutch Rhine, IJssel, and Meuse rivers. We use this database to perform a Monte Carlo based bootstrap analysis on the item statistics, to determine the relation between sample size and variability in the mean and median values. Based on this, we present sample set size requirements, corresponding to selected uncertainty and confidence levels. Optima between sampling effort and information gain is suggested (depending on the acceptable uncertainty level), which is a function of litter type heterogeneity. We found that the heterogeneity of the characteristics of litter items varies between different litter categories, and demonstrate that the minimum required sample set size depends on the heterogeneity of the litter category. This implies that more items of heterogeneous litter categories need to be sampled than of heterogeneous item categories to reach the same uncertainty level in item statistics. For example, to describe the mean mass the heterogeneous category soft fragments (>2.5 cm) with 90% confidence, 990 items were needed, while only 39 items were needed for the uniform category metal bottle caps. Finally, we use the heterogeneity within litter categories to assess the sample size requirements for each river system. All data collected for this study are freely available, and may form the basis of an open access global database which can be used by scientists, practitioners, and policymakers to improve future monitoring strategies and modeling efforts

    Sample size requirements for riverbank macrolitter characterization

    No full text
    Anthropogenic litter is omnipresent in terrestrial and freshwater systems, and can have major economic and ecological impacts. Monitoring and modeling of anthropogenic litter comes with large uncertainties due to the wide variety of litter characteristics, including size, mass, and item type. It is unclear as to what the effect of sample set size is on the reliability and representativeness of litter item statistics. Reliable item statistics are needed to (1) improve monitoring strategies, (2) parameterize litter in transport models, and (3) convert litter counts to mass for stock and flux calculations. In this paper, we quantify sample set size requirement for riverbank litter characterization, using a database of more than 14,000 macrolitter items (>0.5 cm), sampled for 1 year at eight riverbank locations along the Dutch Rhine, IJssel, and Meuse rivers. We use this database to perform a Monte Carlo based bootstrap analysis on the item statistics, to determine the relation between sample size and variability in the mean and median values. Based on this, we present sample set size requirements, corresponding to selected uncertainty and confidence levels. Optima between sampling effort and information gain is suggested (depending on the acceptable uncertainty level), which is a function of litter type heterogeneity. We found that the heterogeneity of the characteristics of litter items varies between different litter categories, and demonstrate that the minimum required sample set size depends on the heterogeneity of the litter category. This implies that more items of heterogeneous litter categories need to be sampled than of heterogeneous item categories to reach the same uncertainty level in item statistics. For example, to describe the mean mass the heterogeneous category soft fragments (>2.5 cm) with 90% confidence, 990 items were needed, while only 39 items were needed for the uniform category metal bottle caps. Finally, we use the heterogeneity within litter categories to assess the sample size requirements for each river system. All data collected for this study are freely available, and may form the basis of an open access global database which can be used by scientists, practitioners, and policymakers to improve future monitoring strategies and modeling efforts

    Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023-2032

    Full text link
    This paper shares an early-career perspective on potential themes for the upcoming International Association of Hydrological Sciences (IAHS) scientific decade (SD). This opinion paper synthesizes six discussion sessions in western Europe identifying three themes that all offer a different perspective on the hydrological threats the world faces and could serve to direct the broader hydrological community: “Tipping points and thresholds in hydrology”, “Intensification of the water cycle”, and “Water services under pressure”. Additionally, four trends were distinguished concerning the way in which hydrological research is conducted: big data, bridging science and practice, open science, and inter- and multidisciplinarity. These themes and trends will provide valuable input for future discussions on the theme for the next IAHS SD. We encourage other Early-Career Scientists to voice their opinion by organizing their own discussion sessions and commenting on this paper to make this initiative grow from a regional initiative to a global movement

    Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032

    No full text
    This paper shares an early-career perspective on potential themes for the upcoming International Association of Hydrological Sciences (IAHS) Scientific Decade (SD). This opinion paper synthesizes six discussion sessions in western Europe identifying three themes that all offer a different perspective on the hydrological threats the world faces and could serve to direct the broader hydrological community: “Tipping points and thresholds in hydrology,” “Intensification of the water cycle,” and “Water services under pressure.” Additionally, four trends were distinguished concerning the way in which hydrological research is conducted: big data, bridging science and practice, open science, and inter- and multidisciplinarity. These themes and trends will provide valuable input for future discussions on the theme for the next IAHS SD. We encourage other early-career scientists to voice their opinion by organizing their own discussion sessions and commenting on this paper to make this initiative grow from a regional initiative to a global movement

    Integrating molecular nuclear imaging in clinical research to improve anticancer therapy

    Get PDF
    Effective patient selection before or early during treatment is important to increasing the therapeutic benefits of anticancer treatments. This selection process is often predicated on biomarkers, predominantly biospecimen biomarkers derived from blood or tumour tissue; however, such biomarkers provide limited information about the true extent of disease or about the characteristics of different, potentially heterogeneous tumours present in an individual patient. Molecular imaging can also produce quantitative outputs; such imaging biomarkers can help to fill these knowledge gaps by providing complementary information on tumour characteristics, including heterogeneity and the microenvironment, as well as on pharmacokinetic parameters, drug- target engagement and responses to treatment. This integrative approach could therefore streamline biomarker and drug development, although a range of issues need to be overcome in order to enable a broader use of molecular imaging in clinical trials. In this Perspective article, we outline the multistage process of developing novel molecular imaging biomarkers. We discuss the challenges that have restricted the use of molecular imaging in clinical oncology research to date and outline future opportunities in this area

    Integrating molecular nuclear imaging in clinical research to improve anticancer therapy

    No full text
    corecore