10 research outputs found

    Comparison of different modalities for the diagnosis of parastomal hernia: a systematic review

    Get PDF
    Purpose: Parastomal hernia (PSH) is a common complication following stoma formation. The incidence of PSH varies widely due to several factors including differences in diagnostic modality, observer, definition, and classification used for diagnosing PSH. The aim of this systematic review was to evaluate the diagnostic accuracy of the modalities used to identify PSH. Methods: Embase, MEDLINE, Cochrane, Web of Science, and Google Scholar databases were searched. Studies reporting PSH incidence rates detected by two or more different diagnostic modalities or inter-observer variation on one diagnostic modality were included. Article selection and assessment of study quality were conducted independently by two researchers using Cochrane Collaboration’s tool for assessing risk of bias. PROSPERO registration: CRD42018112732. Results: Twenty-nine studies (n = 2514 patients) were included. Nineteen studies compared CT to clinical examination with relative difference in incidence rates ranging from 0.64 to 3.0 (n = 1369). Overall, 79% of studies found an increase in incidence rate when using CT. Disagreement between CT and clinical examination ranged between 0 and 37.3% with pooled inter-modality agreement Kappa value of 0.64 (95% CI 0.52–0.77). Four studies investigated the diagnostic accuracy of ultrasonography (n = 103). Compared with peroperative diagnosis, CT and ultrasonography both seemed accurate imaging modalities with a sensitivity of 83%. Conclusion: CT is an accurate diagnostic modality for PSH diagnosis and increases PSH detection rates, as compared with clinical examination. Studies that specially focus on the diagnostic accuracy are needed and should aim to take patient-reported outcomes into account. A detailed description of the diagnostic approach, modality, definition, and involved observers is prerequisite for future PSH research

    Incidence, risk factors and prevention of stoma site incisional hernias

    Get PDF
    Aim: Stoma reversal might lead to a stoma site incisional hernia. Recently, prophylactic mesh reinforcement of the stoma site has gained increased attention, supporting the need for accurate data on the incidence of and risk factors for stoma site incisional hernia and to identify high-risk patients. The aim of this study was to assess incidence, risk factors and prevention of stoma site incisional hernias. Method: Embase, MEDLINE, Web of Science, Cochrane and Google Scholar databases were searched. Studies reporting the incidence of stoma site incisional hernia after stoma reversal were included. Study quality was assessed with the Newcastle–Ottawa Scale and Cochrane risk of bias tool. Data on incidence, risk factors and prophylactic mesh reinforcement were extracted. Results: Of 1440 articles found, 33 studies comprising 4679 reversals were included. The overall incidence of incisional hernia was 6.5% [range 0%–38%, median follow-up 27.5 (17.54–36) months]. Eleven studies assessed stoma site incisional hernia as the primary end-point, showing an incidence of 17.7% [range 1.7%–36.1%, median follow-up 28 (15.25–51.70) months]. Body mass index, diabetes and surgery for malignant disease were found to be independent risk factors, as derived from eight studies. Two retrospective comparative cohort studies showed significantly lower rates of stoma site incisional hernia with prophylactic mesh reinforcement compared with nonmesh controls [6.4% vs 36.1% (P = 0.001); 3% vs 19% (P = 0.04)]. Conclusion: Stoma site incisional hernia should not be underestimated as a long-term problem. Body mass index, diabetes and malignancy seem to be potential risk factors. Currently, limited data are available on the outcomes of prophylactic mesh reinforcement to prevent stoma site incisional hernia

    Outcomes of Incisional Hernia Repair Surgery After Multiple Re-recurrences: A Propensity Score Matched Analysis

    Get PDF
    Background: Patients with a re-recurrent hernia may account for up to 20% of all incisional hernia (IH) patients. IH repair in this population may be complex due to an altered anatomical and biological situation as a result of previous procedures and outcomes of IH repair in this population have not been thoroughly assessed. This study aims to assess outcomes of IH repair by dedicated hernia surgeons in patients who have already had two or more re-recurrences. Methods: A propensity score matched analysis was performed using a registry-based, prospective cohort. Patients who underwent IH repair after ≥ 2 re-recurrences operated between 2011 and 2018 and who fulfilled 1 year follow-up visit were included. Patients with similar follow-up who underwent primary IH repair were propensity score matched (1:3) and served as control group. Patient baseline characteristics, surgical and functional outcomes were analyzed and compared between both groups. Results: Seventy-three patients operated on after ≥ 2 IH re-recurrences were matched to 219 patients undergoing primary IH repair. After propensity score matching, no significant differences in patient baseline characteristics were present between groups. The incidence of re-recurrence was similar between groups (≥ 2 re-recurrences: 25% versus control 24%, p = 0.811). The incidence of complications, as well as long-term pain, was similar between both groups. Conclusion: IH repair in patients who have experienced multiple re-recurrences results in outcomes comparable to patients operated for a primary IH with a similar risk profile. Further surgery in patients who have already experienced multiple hernia re-recurrences is justifiable when performed by a dedicated hernia surgeon

    Functional outcomes in symptomatic versus asymptomatic patients undergoing incisional hernia repair: Replacing one problem with another? A prospective cohort study in 1312 patients

    Get PDF
    Background: Incisional hernias can be associated with pain or discomfort. Surgical repair especially mesh reinforcement, may likewise induce pain. The primary objective was to assess the incidence of pain after hernia repair in patients with and without pre-operative pain or discomfort. The secondary objectives were to determine the preferred mesh type, mesh location and surgical technique in minimizing postoperative pain or discomfort. Materials and methods: A registry-based prospective cohort study was performed, including patients undergoing incisional hernia repair between September 2011 and May 2019. Patients with a minimum follow-up of 3–6 months were included. The incidence of hernia related pain and discomfort was recorded perioperatively. Results: A total of 1312 patients were included. Pre-operatively, 1091 (83%) patients reported pain or discomfort. After hernia repair, 961 (73%) patients did not report pain or discomfort (mean follow-up = 11.1 months). Of the pre-operative asymptomatic patients (n = 221), 44 (20%, moderate or severe pain: n = 14, 32%) reported pain or discomfort after mean follow-up of 10.5 months. Of those patients initially reporting pain or discomfort (n = 1091), 307 (28%, moderate or severe pain: n = 80, 26%) still reported pain or discomfort after a mean follow-up of 11.3 months postoperatively. Conclusion: In symptomatic incisional hernia patients, hernia related complaints may be resolved in the majority of cases undergoing surgical repair. In asymptomatic incisional hernia patients, pain or discomfort may be induced in a considerable number of patients due to surgical repair and one should be aware if this postoperative complication

    A Mössbauer spectroscopic study of the iron redox transition in eastern Mediterranean sediments

    No full text
    Fe cycling at two sites in the Mediterranean Sea (southwest of Rhodes and in the North Aegean) has been studied, combining the pore water determination of nutrients, manganese, and iron, citrate-bicarbonate-dithionite (CDB) and total sediment extractions, X-ray diffraction, and 57Fe Mössbauer spectroscopy (MBS). At the Rhodes site, double peaks in the CDB-extractable Mn and Fe profiles indicate non-steady-state diagenesis. The crystalline iron oxide hematite, identified at both sites by room temperature (RT) MBS, appears to contribute little to the overall Fe reduction. MBS at liquid helium temperature (LHT) revealed that the reactive sedimentary Fe oxide phase was nanophase goethite, not ferrihydrite as is usually assumed. The pore water data at both sites indicates that upon reductive dissolution of nanophase goethite, the upward diffusing dissolved Fe2+ is oxidized by Mn oxides, rather than by nitrate or oxygen. The observed oxidation of Fe2+ by Mn oxides may be more common than previously thought but not obvious in sediments where the nitrate penetration depth coincides with the Mn oxide peak. At the Rhodes site, the solid-phase Fe(II) increase occurred at a shallower depth than the accumulation of dissolved Fe2+ in the pore water. The deeper relict Mn oxide peak acts as an oxidation barrier for the upward diffusing dissolved Fe2+, thereby keeping the pore water Fe2+ at depth. At the North Aegean site, the solid-phase Fe(II) increase occurs at approximately the same depth as the increase in dissolved Fe2+ in the pore water. Overall, the use of RT and cryogenic MBS provided insight into the solid-phase Fe(II) gradient and allowed identification of the sedimentary Fe oxides: hematite, maghemite, and nanophase goethite. Copyright © 2005 Elsevier Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Recent, deep-sourced methane/mud discharge at the most active mud volcano in the western Mediterranean

    No full text
    Active mud volcanism in the West Alboran Basin (WAB) is closely associated with tectonically mobilized, overpressurized shales and shale-diapirism. This appears to control mud expulsion at Carmen mud volcano, a cone-shaped structure 65 m high and 1 km in basal diameter. The presence of gas-rich mud breccia, living chemosynthetic fauna, the absence of hemipelagic draping and the abrupt transition that occurs between high dissolved sulfate in the uppermost interval and low sulfate together with high methane concentrations in the lowermost sediment interval all point to a recent expulsion of mud breccia at the summit of Carmen MV. For the lowermost interval, the depletion of major elements (i.e. Ca2+ and Mg2+) and the enrichment of trace species (i.e. Li and B) in the pore water all indicate a deep fluid source. The δ18Opw (5.7‰ VSMOW) and δDpw (−10‰ VSMOW) of pore water in the lowermost interval correspond with smectite dehydration as the main pore-water freshening mechanism. Water-formation temperatures calculated with empirical geo-thermometers (K-Na, K-Mg; δ18Opw, δDpw, and dissolved B) reveal that fluids were generated at temperatures of ~140 ± 20 °C. Taking a regional geothermal gradient for the WAB of 25–27 °C/km, this points to a fluid source from ~5 ± 1 km sediment depth. This is not only consistent with the depth of overpressurized shales and megabreccia of Lower to Middle Miocene age, but it also fits nicely with the Upper/Middle-Miocene seawater value for the porewater 87Sr/86Sr derived from dissolving carbonates. The stable carbon and hydrogen isotopic composition of methane (δ13Cmethane ~ −59.4‰ VPDB and δDmethane −184‰ VSMOW) for the deepest samples of summit-core GP05PC is consistent with the mentioned deep origin. Mud breccia expulsion of overpressurized deep sedimentary units would be accompanied by rigorous degassing, leading to rapid, ‘instantaneous’ replacement of pore fluid by bottom water in the upper sediments. The absence of oxidized sediment draping, the seawater-like pore-water composition in the uppermost part of the mud breccia interval, and the abrupt methane to sulfate transition all provide evidence for a very recent mud expulsion. The distinctively kink-shaped pore-water Cl− profile in core GP05PC has been used in a numerical transport-reaction model to derive the timing for this event. This eruptive event appears to have taken place very recently, namely 12 ± 5 yrs prior to the 2012 coring, thus in the year 2000 CE.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Laser ablation Mn/Ca ratios of single foraminiferal shells from the Gulf of Lions

    No full text
    Foraminiferal trace element concentrations were determined using two laser ablation ICP-MS systems. Prior to laser ablation, all samples were gently cleaned in methanol (x1) and UHQ water (x4). Between each rinse, the samples were placed in a sonic bath for several seconds to thoroughly clean the tests. Benthic foraminifera from 745m (station D), 980m (station C), 1488m (station B), and 1987m (station A) were measured at Utrecht University using a deep UV (193 nm) ArF excimer laser (Lambda Physik) with GeoLas 200Q optics. Ablation was performed at a pulse repetition rate of 10 Hz and an energy density of 1.4 J/cm², with a crater size of 80 μm. Ablated particles were measured by a quadrupole ICP-MS (Micromass Platform) equipped with a collision and reaction cell. Such a collision and reaction cell improves carbonate analyses by eliminating interferences on mass 44. Scanned masses included 24Mg, 26Mg, 27Al, 42Ca, 43Ca, 55Mn, 88Sr, 137Ba, 138Ba, and 208Pb. Benthic foraminifera from stations F (350 m) and E (552 m) were analyzed at ETH Zurich (due to laboratory renovations at Utrecht University). The laser type and ablation parameters were identical to those detailed above. The ablated particles were measured using a quadrupole ICP-MS (ELAN 6100 DRC, PerkinElmer). In both cases, calibration was performed using an international standard (NIST610) with Ca as an internal standard (Jochum et al., 2011). The same masses as measured in Utrecht were monitored, in addition to 7Li, 23Na, 47Ti, 60Ni, 61Ni, and 89Y. Interlaboratory compatibility was monitored using a matrix-matched calcite standard. For Mn, reported here, this standard showed a precision better than 3%over all analyses, at ETH and UU, and with an offset of less than 5%from an offline-determined (solution ICP-AES) concentration analyzing discrete subsamples. The matrix-matched standard is routinely included in the analyses and has been monitored since 2010 at Utrecht University. Analytical error (equivalent to 1 sigma), based on repeated measurement of an external standard, was < 5% for reported elements. Each laser ablation measurement was screened for contamination by monitoring Al and Pb. On encountering surface contamination, the data integration interval was adjusted to exclude any Al or Pb enrichment. Cross-plots between Al and Pb versus Mn showed that they are unrelated, confirming the accuracy of the integrations

    Rare and low-frequency coding variants alter human adult height

    No full text
    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of
    corecore