35 research outputs found

    Synthetic three-dimensional atomic structures assembled atom by atom

    Full text link
    We demonstrate the realization of large, fully loaded, arbitrarily-shaped three-dimensional arrays of single atoms. Using holographic methods and real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures with up to 72 atoms separated by distances of a few micrometres. Our method allows for high average filling fractions and the unique possibility to obtain defect-free arrays with high repetition rates. These results find immediate application for the quantum simulation of spin Hamiltonians using Rydberg atoms in state-of-the-art platforms, and are very promising for quantum-information processing with neutral atoms.Comment: 5 pages, 3 figure

    Realizing quantum Ising models in tunable two-dimensional arrays of single Rydberg atoms

    Full text link
    Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computers as soon as the number of particles exceeds a few tens. For this reason, the quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become very active over the last years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own assets, but also limitations. Here, we report on a novel platform for the study of spin systems, using individual atoms trapped in two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100% with exact knowledge of the initial configuration. When excited to Rydberg D-states, the atoms undergo strong interactions whose anisotropic character opens exciting prospects for simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects we find an excellent agreement with ab-initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D-states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.Comment: This is the version of the manuscript as initially submitted to Natur

    Topologically protected edge states in small Rydberg systems

    Full text link
    We propose a simple setup of Rydberg atoms in a honeycomb lattice which gives rise to topologically protected edge states. The proposal is based on the combination of dipolar exchange interaction, which couples the internal angular momentum and the orbital degree of freedom of a Rydberg excitation, and a static magnetic field breaking time reversal symmetry. We demonstrate that for realistic experimental parameters, signatures of topologically protected edge states are present in small systems with as few as 10 atoms. Our analysis paves the way for the experimental realization of Rydberg systems characterized by a topological invariant, providing a promising setup for future application in quantum information.Comment: 6 pages, 6 figure

    Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    Full text link
    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically-driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states and we observe its n3n^3-scaling with the principal quantum number nn. To explain the damping of Rabi oscillations, we use simple numerical models, taking into account independently measured experimental imperfections, and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percents. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.Comment: 9 pages, 9 figure

    Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising antiferromagnets

    Full text link
    We explore the dynamics of artificial one- and two-dimensional Ising-like quantum antiferromagnets with different lattice geometries by using a Rydberg quantum simulator of up to 36 spins in which we dynamically tune the parameters of the Hamiltonian. We observe a region in parameter space with antiferromagnetic (AF) ordering, albeit with only finite-range correlations. We study systematically the influence of the ramp speeds on the correlations and their growth in time. We observe a delay in their build-up associated to the finite speed of propagation of correlations in a system with short-range interactions. We obtain a good agreement between experimental data and numerical simulations taking into account experimental imperfections measured at the single particle level. Finally, we develop an analytical model, based on a short-time expansion of the evolution operator, which captures the observed spatial structure of the correlations, and their build-up in time

    Ultrafast energy exchange between two single Rydberg atoms on the nanosecond timescale

    Full text link
    Rydberg atoms, with their giant electronic orbitals, exhibit dipole-dipole interaction reaching the GHz range at a distance of a micron, making them a prominent contender for realizing quantum operations well within their coherence time. However, such strong interactions have never been harnessed so far, mainly because of the stringent requirements on the fluctuation of the atom positions and the necessary excitation strength. Here, using atoms trapped in the motional ground-state of optical tweezers and excited to a Rydberg state with picosecond pulsed lasers, we observe an interaction-driven energy exchange, i.e., a F\"orster oscilation, occuring in a timescale of nanoseconds, two orders of magnitude faster than in any previous work with Rydberg atoms. This ultrafast coherent dynamics gives rise to a conditional phase which is the key resource for an ultrafast controlled-ZZ gate. This opens the path for quantum simulation and computation operating at the speed-limit set by dipole-dipole interactions with this ultrafast Rydberg platform

    Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder

    Get PDF
    We explore the dynamics of Rydberg excitations in an optical tweezer array under anti-blockade (or facilitation) conditions. Due to the finite temperature the atomic positions are randomly spread, an effect that leads to quenched correlated disorder in the interatomic interaction strengths. This drastically affects the facilitation dynamics as we demonstrate experimentally on the elementary example of two atoms. To shed light on the role of disorder in a many-body setting we show that here the dynamics is governed by an Anderson-Fock model, i.e. an Anderson model formulated on a lattice with sites corresponding to many-body Fock states. We first consider a one-dimensional atom chain in a limit which is described by a one-dimensional Anderson-Fock model with disorder on every other site, featuring both localized and delocalized states. We then illustrate the effect of disorder experimentally in a situation in which the system maps on a two-dimensional Anderson-Fock model on a trimmed square lattice. We observe a clear suppression of excitation propagation which we ascribe to the localization of the many-body wavefunctions in Hilbert space

    Strong Spin-Motion Coupling in the Ultrafast Quantum Many-body Dynamics of Rydberg Atoms in a Mott-insulator Lattice

    Full text link
    Rydberg atoms in optical lattices and tweezers is now a well established platform for simulating quantum spin systems. However, the role of the atoms' spatial wavefunction has not been examined in detail experimentally. Here, we show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread. We observe its clear signature on the ultrafast, out-of-equilibrium, many-body dynamics of atoms excited to a Rydberg S state from an unity-filling atomic Mott-insulator. We also propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials. Our work provides a new direction for exploring the dynamics of strongly-correlated quantum systems by adding the motional degree of freedom to the Rydberg simulation toolbox
    corecore