131 research outputs found

    Silent coronary artery disease in type 2 diabetes: a narrative review on epidemiology, risk factors, and clinical studies

    Get PDF
    Silent coronary artery disease (CAD) is one of the manifestations of heart disease that particularly affects subjects with type 2 diabetes mellitus (T2DM). From a clinical point of view, silent CAD represents a constant challenge for the diabetologist, who has to decide whether a patient could or could not be screened for this disease. In the present narrative review, several aspects of silent CAD are considered: the epidemiology of the disease, the associated risk factors, and main studies conducted, in the last 20 years, especially aimed to demonstrate the usefulness of the screening of silent CAD, to improve cardiovascular outcomes in type 2 diabetes

    Longevity pathways and metabolic syndrome

    Get PDF
    The metabolic syndrome is becoming increasingly prevalent in the general population and carries significant incremental morbidity and mortality. It is associated with multi-organ involvement and increased all-cause mortality, resembling a precocious aging process. The mechanisms that account for this phenomenon are incompletely known, but it is becoming clear that longevity genes might be involved. Experiments with overactivation or disruption of key lifespan determinant pathways, such as silent information regulator (SIR)T1, p66Shc, and mammalian target of rapamycin (TOR), lead to development of features of the metabolic syndrome in mice. These genes integrate longevity pathways and metabolic signals in a complex interplay in which lifespan appears to be strictly dependent on substrate and energy bioavailability. Herein, we describe the roles and possible interconnections of selected lifespan determinant molecular networks in the development of the metabolic syndrome and its complications, describing initial available data in humans. Additional pathways are involved in linking nutrient availability and longevity, certainly including insulin and Insulin-like Growth Factor-1 (IGF-1) signaling, as well as FOXO transcription factors. The model described in this viewpoint article is therefore likely to be an oversimplification. Nevertheless, it represents one starting platform for understanding cell biology of lifespan in relation to the metabolic syndrome

    Amelioration of glucose control mobilizes circulating pericyte progenitor cells in type 2 diabetic patients with microangiopathy

    Get PDF
    Chronic diabetic complications result from an imbalance between vascular damage and regeneration. Several circulating lineagecommitted progenitor cells have been implicated, but no data are available on pericyte progenitor cells (PPCs). Based on the evidence that PPCs increase in cancer patients after chemotherapy, we explored whether circulating PPC levels are affected by glucose control in type 2 diabetic patients, in relation to the presence of chronic complications. We enumerated peripheral blood PPCs as Syto16+CD45−CD31−CD140b+ events by flow cytometry at baseline and after 3 and 6 months of glucose control by means of add-on basal insulin therapy on top of oral agents in 38 poorly controlled type 2 diabetic patients. We found that, in patients with microangiopathy (n = 23), the level of circulating PPCs increased about 2 fold after 3 months and then returned to baseline at 6 months. In patients without microangiopathy (control group, n = 15), PPCs remained fairly stable during the whole study period. No relationship was found between change in PPCs and macroangiopathy (either peripheral, coronary, or cerebrovascular). We conclude that glucose control transiently mobilizes PPCs diabetic patients with microangiopathy. Increase in PPCs may represent a vasoregenerative event or may be a consequence of ameliorated glucose control on microvascular lesions

    The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients With Type 2 Diabetes: Possible role of stromal-derived factor-1α

    Get PDF
    OBJECTIVE: Vasculoprotective endothelial progenitor cells (EPCs) are regulated by stromal-derived factor-1alpha (SDF-1alpha) and are reduced in type 2 diabetes. Because SDF-1alpha is a substrate of dipeptidyl-peptidase-4 (DPP-4), we investigated whether the DPP-4 inhibitor sitagliptin modulates EPC levels in type 2 diabetic patients. RESEARCH DESIGN AND METHODS: This was a controlled, nonrandomized clinical trial comparing 4-week sitagliptin (n = 16) versus no additional treatment (n = 16) in addition to metformin and/or secretagogues in type 2 diabetic patients. We determined circulating EPC levels and plasma concentrations of SDF-1alpha, monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and nitrites/nitrates. RESULTS: There was no difference in clinical baseline data between the sitagliptin and control arms. After 4 weeks, as compared with control subjects, patients receiving sitagliptin showed a significant increase in EPCs and SDF-1alpha and a decrease in MCP-1. CONCLUSIONS: Sitagliptin increases circulating EPCs in type 2 diabetic patients with concomitant upregulation of SDF-1alpha. This ancillary effect of DPP-4 inhibition might have potential favorable cardiovascular implications

    Procalcific Phenotypic Drift of Circulating Progenitor Cells in Type 2 Diabetes with Coronary Artery Disease

    Get PDF
    Diabetes mellitus (DM) alters circulating progenitor cells relevant for the pathophysiology of coronary artery disease (CAD). While endothelial progenitor cells (EPCs) are reduced, there is no data on procalcific polarization of circulating progenitors, which may contribute to vascular calcification in these patients. In a cohort of 107 subjects with and without DM and CAD, we analyzed the pro-calcific versus endothelial differentiation status of circulating CD34+ progenitor cells. Endothelial commitment was determined by expression of VEGFR-2 (KDR) and pro-calcific polarization by expression of osteocalcin (OC) and bone alkaline phosphatase (BAP). We found that DM patients had significantly higher expression of OC and BAP on circulating CD34+ cells than control subjects, especially in the presence of CAD. In patients with DM and CAD, the ratio of OC/KDR, BAP/KDR, and OC+BAP/KDR was about 3-fold increased than in other groups. EPCs cultured from DM patients with CAD occasionally formed structures highly suggestive of calcified nodules, and the expression of osteogenic markers by EPCs from control subjects was significantly increased in response to the toll-like receptor agonist LPS. In conclusion, circulating progenitor cells of diabetic patients show a phenotypic drift toward a pro-calcific phenotype that may be driven by inflammatory signals

    Circulating levels and characterization of microparticles in patients with different degrees of glucose tolerance

    Get PDF
    Abstract Background Microparticles (MPs) are vesicular structures shed from endothelial or circulating blood cells, after activation or apoptosis, and can be considered markers of vascular damage. We aimed to determine the levels of circulating MPs, their content of miRNA-126-3p and 5p, and their relationship with early endothelial activation/damage, in patients with different degree of glucose tolerance. Methods CD62E+, CD62P+, CD142+, CD45+ circulating MPs, their apoptotic (AnnexinV+) fractions, and miRNA-126 expression were determined in 39 prediabetic (PreDM), 68 type 2 diabetic (T2DM), and 53 control (NGT) subjects, along with main anthropometric and biochemical measurements. MPs were analysed by flow cytometry. miRNA-126 was measured by quantitative real-time PCR. Plasma antioxidant capacity was determined by electronic spin resonance; ICAM-1, and VCAM-1 by ELISA. Results Activated endothelial cell-derived MPs (CD62E+) were significantly increased in PreDM and T2DM in comparison to NGT (p < 0.0001). AnnexinV+/CD62E+ MPs and Annexin V+ MPs were significantly increased in T2DM compared to PreDM and NGT (p < 0.001); other MPs were not significantly different among groups. Plasma antioxidant capacity was significantly decreased in PreDM and T2DM compared to NGT (p = 0.001); VCAM-1 significantly increased in PreDM and T2DM in comparison to NGT (p = 0.001). miR-126-3p expression, but not miR-126-5p, in MPs, decreased significantly and progressively from NGT, to PreDM, and T2DM (p < 0.001). In PreDM and T2DM, CD62E+ MPs level was significantly and negatively associated with plasma glucose (p = 0.004). Conclusion We show for the first time that circulating CD62E+ MPs level and miR-126-3p content in MPs are abnormal in subjects with pre-diabetes; the content of miR-126-3p correlates with markers of endothelial inflammation, such as VCAM-1, plasma antioxidant capacity, and microparticles, well-accepted markers of endothelial dysfunction

    Time Course and Mechanisms of Circulating Progenitor Cell Reduction in the Natural History of Type 2 Diabetes

    Get PDF
    OBJECTIVE: Reduction of bone marrow-derived circulating progenitor cells has been proposed as a novel mechanism of cardiovascular disease in type 2 diabetes. The present study was designed to describe the extent and potential mechanisms of progenitor cell reduction during the natural history of type 2 diabetes. RESEARCH DESIGN AND METHODS: We identified 425 individuals, divided into seven categories according to carbohydrate metabolism status (normal glucose tolerance [NGT], impaired fasting glucose, impaired glucose tolerance [IGT], and newly diagnosed type 2 diabetes) and diabetes duration (0-9, 10-19, and >or=20 years). These categories were examined as ideally describing the natural history of type 2 diabetes development and progression. We measured CD34+ and CD34+KDR+ progenitor cells by flow cytometry. We also evaluated progenitor cells in 20 coupled bone marrow and peripheral blood samples and examined progenitor cell apoptosis in 34 subjects. RESULTS: In comparison to NGT, CD34+ cells were significantly reduced in IGT and had a first nadir in newly diagnosed type 2 diabetes and a second nadir after 20 years of diabetes. Statistical adjustment for possible confounders confirmed that CD34+ cell counts are deeply reduced at time of diagnosis, that they partially recover during the subsequent 0-19 years, and that they dip again after >or=20 years. A similar, but less consistent, trend was detected for CD34+KDR+ cells. Peripheral blood CD34+ cells were directly correlated with bone marrow CD34+ cells and inversely correlated with CD34+ cell apoptosis. CONCLUSIONS: Circulating progenitor cell reduction marks the clinical onset of type 2 diabetes. Both defective mobilization and increased apoptosis may account for this phenomenon. While a partial recovery occurs during subsequent years, bone marrow reserve seems exhausted in the long term

    Effects of androgens on endothelial progenitor cells in vitro and in vivo

    Get PDF
    The beneficial or detrimental effects of androgens on the cardiovascular system are debated. Endothelial progenitor cells are bone-marrow-derived cells involved in endothelial healing and angiogenesis, which promote cardiovascular health. Oestrogens are potent stimulators of endothelial progenitor cells, and previous findings have indicated that androgens may improve the biology of these cells as well. In the present study, we show that testosterone and its active metabolite dihydrotestosterone exert no effects on the expansion and function of late endothelial progenitors isolated from the peripheral blood of healthy human adult males, whereas they positively modulate early ‘monocytic’ endothelial progenitor cells. In parallel, we show that castration in rats is followed by a decrease in circulating endothelial progenitor cells, but that testosterone and dihydrotestosterone replacement fails to restore endothelial progenitor cells towards normal levels. This is associated with persistently low oestrogen levels after androgen replacement in castrated rats. In a sample of 62 healthy middle-aged men, we show that circulating endothelial progenitor cell levels are more directly associated with oestradiol, rather than with testosterone, concentrations. In conclusion, our results collectively demonstrate that androgens exert no direct effects on endothelial progenitor cell biology in vitro and in vivo

    Circulating Progenitor Cell Count for Cardiovascular Risk Stratification: A Pooled Analysis

    Get PDF
    Background: Circulating progenitor cells (CPC) contribute to the homeostasis of the vessel wall, and a reduced CPC count predicts cardiovascular morbidity and mortality. We tested the hypothesis that CPC count improves cardiovascular risk stratification and that this is modulated by low-grade inflammation. Methodology/Principal Findings: We pooled data from 4 longitudinal studies, including a total of 1,057 patients having CPC determined and major adverse cardiovascular events (MACE) collected. We recorded cardiovascular risk factors and high-sensitive C-reactive protein (hsCRP) level. Risk estimates were derived from Cox proportional hazard analyses. CPC count and/or hsCRP level were added to a reference model including age, sex, cardiovascular risk factors, prevalent CVD, chronic renal failure (CRF) and medications. The sample was composed of high-risk individuals, as 76.3% had prevalent CVD and 31.6% had CRF. There were 331 (31.3%) incident MACE during an average 1.7±1.1 year follow-up time. CPC count was independently associated with incident MACE even after correction for hsCRP. According to C-statistics, models including CPC yielded a non-significant improvement in accuracy of MACE prediction. However, the integrated discrimination improvement index (IDI) showed better performance of models including CPC compared to the reference model and models including hsCRP in identifying MACE. CPC count also yielded significant net reclassification improvements (NRI) for CV death, non-fatal AMI and other CV events. The effect of CPC was independent of hsCRP, but there was a significant more-than-additive interaction between low CPC count and raised hsCRP level in predicting incident MACE. Conclusions/Significance: In high risk individuals, a reduced CPC count helps identifying more patients at higher risk of MACE over the short term, especially in combination with a raised hsCRP level

    Telemedicine for the Clinical Management of Diabetes; Implications and Considerations After COVID-19 Experience

    Get PDF
    Telemedicine is a clinical approach that was seldom used in the day-to-day practice, if not only in certain settings, before the COVID-19 pandemic. As stated by the WHO, telemedicine is: the delivery of health care services, where distance is a critical factor, by all health care professionals using information and communication technologies (ICT) for the exchange of valid information for diagnosis, treatment and prevention of disease and injuries, horizontal ellipsis . Telemedicine has actually represented the most useful and employed tool to maintain contacts between patients and physicians during the period of physical distance imposed by the pandemic, especially during the lockdown. Diabetes in particular, a chronic disease that often needs frequent confronting between patient and health professionals has taken advantage of the telehealth approach. Nowadays, technological tools are more and more widely used for the management of diabetes. In this review results obtained by telemendicine application in type 1 and type 2 diabetic individuals during COVID-19 are revised, and future perspectives for telemedicine use to manage diabetes are discussed
    corecore