741 research outputs found

    Modeling the near-infrared lines of O-type stars

    Get PDF
    We use a grid of 30 line-blanketed unified stellar photosphere and wind models for O-type stars; computed with the code CMFGEN in order to evaluate its potential in the near-infrared spectral domain. The grid includes dwarfs, giants and supergiants. We analyse the equivalent width behaviour of the 20 strongest lines of hydrogen and helium in spectral windows that can be observed using ground-based instrumentation and compare the results with observations. Our main findings are that: i) HeI/HeII line ratios in the J, H and K bands correlate well with the optical ratio employed in spectral classification, and can therefore be used to determine the spectral type; ii) in supergiant stars the transition from the stellar photosphere to the wind follows a shallower density gradient than the standard approach followed in our models, which can be mimicked by adopting a lower gravity in our prescription of the density stratification. iii) the Brackett gamma line poses a number of peculiar problems which partly might be related to wind clumping, and iv) the Brackett alpha line is an excellent mass-loss indicator. For the first and last item we provide quantitative calibrations.Comment: 14 pages, 7 figures, accepted by A&

    On the Mass-Loss Rates of Massive Stars in the Low-Metallicity Galaxies IC 1613, WLM and NGC 3109

    Get PDF
    We present a spectroscopic analysis of VLT/X-Shooter observations of six O-type stars in the low-metallicity (Z ~ 1/7 Z\odot) galaxies IC 1613, WLM and NGC 3109. The stellar and wind parameters of these sources allow us, for the first time, to probe the mass-loss versus metallicity dependence of stellar winds below that of the Small Magellanic Cloud (at Z ~ 1/5Z\odot) by means of a modified wind momentum versus luminosity diagram. The wind strengths that we obtain for the objects in WLM and NGC 3109 are unexpectedly high and do not agree with theoretical predictions. The objects in IC 1613 tend towards a higher than expected mass-loss rate, but remain consistent with predictions within their error bars. We discuss potential systematic uncertainties in the mass-loss determinations to explain our results. However, if further scrutinization of these findings point towards an intrinsic cause for this unexpected sub-SMC mass-loss behavior, implications would include a higher than anticipated number of Wolf-Rayet stars and Ib/Ic supernovae in low-metallicity environments, but a reduced number of long-duration gamma-ray bursts produced through a single-star evolutionary channel.Comment: 9 pages, 3 figures; accepted for publication in The Astrophysical Journal Letter

    Bottling the champagne: dynamics and radiation trapping of wind-driven bubbles around massive stars

    Get PDF
    In this paper we make predictions for the behaviour of wind bubbles around young massive stars using analytic theory. We do this in order to determine why there is a discrepancy between theoretical models that predict that winds should play a secondary role to photoionisation in the dynamics of HII regions, and observations of young HII regions that seem to suggest a driving role for winds. In particular, regions such as M42 in Orion have neutral hydrogen shells, suggesting that the ionising radiation is trapped closer to the star. We first derive formulae for wind bubble evolution in non-uniform density fields, focusing on singular isothermal sphere density fields with a power law index of -2. We find that a classical "Weaver"-like expansion velocity becomes constant in such a density distribution. We then calculate the structure of the photoionised shell around such wind bubbles, and determine at what point the mass in the shell cannot absorb all of the ionising photons emitted by the star, causing an "overflow" of ionising radiation. We also estimate perturbations from cooling, gravity, magnetic fields and instabilities, all of which we argue are secondary effects for the conditions studied here. Our wind-driven model provides a consistent explanation for the behaviour of M42 to within the errors given by observational studies. We find that in relatively denser molecular cloud environments \around single young stellar sources, champagne flows are unlikely until the wind shell breaks up due to turbulence or clumping in the cloud.Comment: 17 pages, 10 figures, published in MNRA

    Wolf-Rayet nebulae as tracers of stellar ionizing fluxes: I. M1-67

    Get PDF
    We use WR124 (WN8h) and its associated nebula M1-67, to test theoretical non-LTE models for Wolf-Rayet (WR) stars. Lyman continuum ionizing flux distributions derived from a stellar analysis of WR124, are compared with nebular properties via photo-ionization modelling. Our study demonstrates the significant role that line blanketing plays in affecting the Lyman ionizing energy distribution of WR stars, of particular relevance to the study of HII regions containing young stellar populations. We confirm previous results that non-line blanketed WR energy distributions fail to explain the observed nebular properties of M1-67, such that the predicted ionizing spectrum is too hard. A line blanketed analysis of WR124 is carried out using the method of Hillier & Miller (1998), with stellar properties in accord with previous results, except that the inclusion of clumping in the stellar wind reduces its wind performance factor to only approx2. The ionizing spectrum of the line blanketed model is much softer than for a comparable temperature unblanketed case, such that negligible flux is emitted with energy above the HeI 504 edge. Photo-ionization modelling, incorporating the observed radial density distribution for M1-67 reveals excellent agreement with the observed nebular electron temperature, ionization balance and line strengths. An alternative stellar model of WR124 is calculated, following the technique of de Koter et al. (1997), augmented to include line blanketing following Schmutz et al. (1991). Good consistency is reached regarding the stellar properties of WR124, but agreement with the nebular properties of M1-67 is somewhat poorer than for the Hillier & Miller code.Comment: 12 pages, 5 figures, latex2e style file, Astronomy & Astrophysics (accepted

    The rotation rates of massive stars: the role of binary interaction through tides, mass transfer and mergers

    Get PDF
    Rotation is thought to be a major factor in the evolution of massive stars, especially at low metallicity, with consequences for their chemical yields, ionizing flux and final fate. Determining the natal rotation-rate distribution of stars is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local Universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20^+5_-10% of all massive main-sequence stars have projected rotational velocities in excess of 200km/s. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.Comment: 14 pages, 5 figures, accepted for publication in ApJ., no changes with v1 apart from fixed typos/ref

    SwSt 1: an O-rich planetary nebula around a C-rich central star

    Get PDF
    The hydrogen-deficient carbon-rich [WCL] type central star HD167362 and its oxygen-rich planetary nebula (PN) SwSt~1 are investigated. The nebular chemistry might indicate a recent origin for the carbon-rich stellar spectrum. Its stellar and nebular properties might therefore provide further understanding of the origin of the [WCL] central star class. The UV-IR stellar spectra are modelled with state of the codes and show ~40kK central star with a wind and a C/O~3, indicative of efficient third dredge-up. The synthetic stellar flux distribution is used to model the high density, compact PN, which has a solar C/O ratio, is still enshrouded by 1200K and 230K dust shells and, reported here for the first time, in molecular hydrogen. Although it appears that the change in C/O ratio has been recent, the published spectroscopy since 1895 has been re-examined and no clear spectral change is seen. If an event occurred that has turned it into a hydrogen-deficient central star, it did not happen in the last 100 years.Comment: 31 pages, 19 figures (some are gif files), MNRAS in pres
    • …
    corecore