668 research outputs found

    Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF) regulates neutrophil production through activation of its cognate receptor, the G-CSF-R. Previous studies with deletion mutants have shown that the membrane-proximal cytoplasmic domain of the receptor is sufficient for mitogenic signaling, whereas the membrane-distal domain is required for differentiation signaling. However, the function of the four cytoplasmic tyrosines of the G-CSF-R in the control of proliferation, differentiation, and survival has remained unclear. Here we investigated the role of these tyrosines by expressing a tyrosine 'null' mutant and single tyrosine 'add back' mutants in maturation-competent myeloid 32D cells. Clones expressing the null mutant showed only minimal proliferation and differentiation, with survival also reduced at low G-CSF concentrations. Analysis of clones expressing the add-back mutants revealed that multiple tyrosines contribute to proliferation, differentiation, and survival signals from the G-CSF-R. Analysis of signaling pathways downstream of these tyrosines suggested a positive role for STAT3 activation in both differentiation and survival signaling, whereas SHP-2, Grb2 and Shc appear important for proliferation signaling. In addition, we show that a tyrosine- independent 'differentiation domain' in the membrane-distal region of the G- CSF-R appears necessary but not sufficient for mediating neutrophilic differentiation in these cells

    Plasmodium translocon component EXP2 facilitates hepatocyte invasion

    Get PDF
    Plasmodium parasites possess a translocon that exports parasite proteins into the infected erythrocyte. Although the translocon components are also expressed during the mosquito and liver stage of infection, their function remains unexplored. Here, using a combination of genetic and chemical assays, we show that the translocon component Exported Protein 2 (EXP2) is critical for invasion of hepatocytes. EXP2 is a pore-forming protein that is secreted from the sporozoite upon contact with the host cell milieu. EXP2-deficient sporozoites are impaired in invasion, which can be rescued by the exogenous administration of recombinant EXP2 and alpha-hemolysin (an S. aureus pore-forming protein), as well as by acid sphingomyelinase. The latter, together with the negative impact of chemical and genetic inhibition of acid sphingomyelinase on invasion, reveals that EXP2 pore-forming activity induces hepatocyte membrane repair, which plays a key role in parasite invasion. Overall, our findings establish a novel and critical function for EXP2 that leads to an active participation of the host cell in Plasmodium sporozoite invasion, challenging the current view of the establishment of liver stage infection

    Investigation of the Plasmodium falciparum Food Vacuole through Inducible Expression of the Chloroquine Resistance Transporter (PfCRT)

    Get PDF
    Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein

    Truncation of Plasmodium berghei merozoite surface protein 8 does not affect in vivo blood-stage development

    Full text link
    Merozoite surface protein 8 (MSP8) has shown promise as a vaccine candidate in the Plasmodium yoelii rodent malaria model and has a proposed role in merozoite invasion of erythrocytes. However, the temporal expression and localisation of MSP8 are unusual for a merozoite antigen. Moreover, in Plasmodium falciparum the MSP8 gene could be disrupted with no apparent effect on in vitro growth. To address the in vivo function of full-length MSP8, we truncated MSP8 in the rodent parasite Plasmodium berghei. Pb&Delta;MSP8 disruptant parasites displayed a normal blood-stage growth rate but no increase in reticulocyte preference, a phenomenon observed in P. yoelii MSP8 vaccinated mice. Expression levels of erythrocyte surface antigens were similar in P. berghei wild-type and Pb&Delta;MSP8-infected erythrocytes, suggesting that a parasitophorous vacuole function for MSP8 does not involve global trafficking of such antigens. These data demonstrate that a full-length membrane-associated form of PbMSP8 is not essential for blood-stage growth.<br /

    Perivascular macrophages create an intravascular niche for CD8 + T cell localisation prior to the onset of fatal experimental cerebral malaria

    Get PDF
    Objectives: The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when Plasmodium berghei ANKA (PbA)-infected mice show only minor clinical signs. Methods: A 2-photon intravital microscopy (2P-IVM) brain imaging model was used to study the spatiotemporal context of early immunological events in situ during ECM. Results: Early in the disease course, antigen-specific CD8+ T cells came in contact and arrested on the endothelium of post-capillary venules. CD8+ T cells typically adhered adjacent to, or were in the near vicinity of, perivascular macrophages (PVMs) that line post-capillary venules. Closer examination revealed that CD8+ T cells crawled along the inner vessel wall towards PVMs that lay on the abluminal side of large post-capillary venules. 'Activity hotspots' in large post-capillary venules were characterised by T-cell localisation, activated morphology and clustering of PVM, increased abutting of post-capillary venules by PVM and augmented monocyte accumulation. In the later stages of infection, when mice exhibited neurological signs, intravascular CD8+ T cells increased in number and changed their behaviour, actively crawling along the endothelium and displaying frequent, short-term interactions with the inner vessel wall at hotspots. Conclusion: Our study suggests an active interaction between PVM and CD8+ T cells occurs across the blood-brain barrier (BBB) in early ECM, which may be the initiating event in the inflammatory cascade leading to BBB alteration and neuropathology

    A New Rodent Model to Assess Blood Stage Immunity to the Plasmodium falciparum Antigen Merozoite Surface Protein 119 Reveals a Protective Role for Invasion Inhibitory Antibodies

    Get PDF
    Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies to antiparasite immunity. Here we use an allelic replacement approach to generate a rodent malaria parasite (Plasmodium berghei) that expresses a human malaria (Plasmodium falciparum) form of MSP-119. We show that mice made semi-immune to this parasite line generate high levels of merozoite inhibitory antibodies that are specific for P. falciparum MSP-119. Importantly, protection from homologous blood stage challenge in these mice correlated with levels of P. falciparum MSP-119–specific inhibitory antibodies, but not with titres of total MSP-119–specific immunoglobulins. We conclude that merozoite inhibitory antibodies generated in response to infection can play a significant role in suppressing parasitemia in vivo. This study provides a strong impetus for the development of blood stage vaccines designed to generate invasion inhibitory antibodies and offers a new animal model to trial P. falciparum MSP-119 vaccines

    Antibodies against Merozoite Surface Protein (Msp)-119 Are a Major Component of the Invasion-Inhibitory Response in Individuals Immune to Malaria

    Get PDF
    Antibodies that bind to antigens expressed on the merozoite form of the malaria parasite can inhibit parasite growth by preventing merozoite invasion of red blood cells. Inhibitory antibodies are found in the sera of malaria-immune individuals, however, the specificity of those that are important to this process is not known. In this paper, we have used allelic replacement to construct a Plasmodium falciparum parasite line that expresses the complete COOH-terminal fragment of merozoite surface protein (MSP)-119 from the divergent rodent malaria P. chabaudi. By comparing this transfected line with parental parasites that differ only in MSP-119, we show that antibodies specific for this domain are a major component of the inhibitory response in P. falciparum–immune humans and P. chabaudi–immune mice. In some individual human sera, MSP-119 antibodies dominated the inhibitory activity. The finding that antibodies to a small region of a single protein play a major role in this process has important implications for malaria immunity and is strongly supportive of further understanding and development of MSP-119–based vaccines

    Novel Point Mutation in the Extracellular Domain of the Granulocyte Colony-Stimulating Factor (G-Csf) Receptor in a Case of Severe Congenital Neutropenia Hyporesponsive to G-Csf Treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand–receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness
    • …
    corecore