5 research outputs found

    Development of Generic Tools for Coastal Early Warning and Decision Support

    No full text
    Recent and historic high-impact events demonstrated coastal risk (Xynthia, Europe, 2010; Katrina, USA, 2005). This is only to get worse, because risk is increasing due to increase in both hazard intensity, frequency and increase in consequences (increased coastal development). Adaptation requires a re-evaluation of coastal disaster risk reduction (DRR) strategies and a new mix of prevention, mitigation (e.g. limiting construction in flood-prone areas) and preparedness (e.g. Early warning systems, EWS) measures. Within the EU funded project RISC-KIT the focus is on preparedness measures and its aim is to demonstrate robustness and applicability of coastal EWS (Early Warning Systems) and DSS (Decision Support Systems). Delft-FEWS, a generic tool for Early Warning Systems has been extended, to be applied at sites all across Europe. The challenges for developing a modern EWS are found in the integration of large data sets, specialised modules to process the data, and open interfaces to allow easy integration of existing modelling capacities. In response to these challenges, Delft-FEWS provides a state of the art EWS framework, which is highly customizable to the specific requirements of an individual organisation. For ten case study sites on all EU regional seas a EWS has been developed, to provide real-time (short-term) forecasts and early warnings. The EWS component is a 2D model framework of hydro-meteo and morphological models which computes hazard intensities. The total expected impact of a hazard can be obtained by using a Bayesian network DSS. This DSS, which is incorporated in the Delft-FEWS platform is a tool that links coastal multi-hazards to their socioeconomic and environmental consequences. An important innovation of the EWS/DSS lies in its application in dual mode: as a forecast and warning system and as a consistent ex-ante planning tool to evaluate the long-term vulnerability due to multiple (low-frequency) coastal hazards, under various climate-related scenarios. Generic tools which can be used to set-up a EWS/DSS for coastal regions regardless of geomorphic settings, forcing or hazard type have been developed and are available via the project website

    RISC-KIT: Resilience-Increasing Strategies for Coasts - toolKIT

    No full text
    Recent and historic high-impact events have demonstrated the flood risks faced by exposed coastal areas. These risks will increase due to climate change and economic development. This requires a re-evaluation of coastal DRR strategies and PMP measures. To this end, the UN Office for Disaster Risk Reduction formulated the Hyogo Framework for Action, and the EU has issued the Floods Directive. By their nature, neither is specific about the methods to be used to assess coastal risks, particularly those risks resulting from dune and structure overtopping, the non-stationarity of surge and flash flood events, and coastal morphodynamic response. This paper describes a set of open-source and open-access methods, tools and management approaches to fill this gap. A Coastal Risk Assessment Framework will assess coastal risk at a regional scale. Thus critical hotspots can be identified for which an impact-oriented Early Warning System/Decision Support System is developed. This can be applied in dual mode: as a forecast and warning system and as an ex-ante planning tool to evaluate the vulnerability. The tools are demonstrated on case study sites on a range of EU coasts with diverse geomorphic settings, land use, forcing, hazard types and socio-economic, cultural and environmental characteristics. Specific DRR plans will be developed for all sites. A management guide of PMP measures and management approaches is to be developed. The toolkit will benefit forecasting and civil protection agencies, coastal managers, local government, community members, NGOs, the general public and scientists
    corecore