17,901 research outputs found

    Classical Optimizers for Noisy Intermediate-Scale Quantum Devices

    Get PDF
    We present a collection of optimizers tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices. Optimizers have a range of applications in quantum computing, including the Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization (QAOA) algorithms. They are also used for calibration tasks, hyperparameter tuning, in machine learning, etc. We analyze the efficiency and effectiveness of different optimizers in a VQE case study. VQE is a hybrid algorithm, with a classical minimizer step driving the next evaluation on the quantum processor. While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results. We explore state-of-the-art gradient-free optimizers capable of handling noisy, black-box, cost functions and stress-test them using a quantum circuit simulation environment with noise injection capabilities on individual gates. Our results indicate that specifically tuned optimizers are crucial to obtaining valid science results on NISQ hardware, and will likely remain necessary even for future fault tolerant circuits

    Unfolding Quantum Computer Readout Noise

    Full text link
    In the current era of noisy intermediate-scale quantum (NISQ) computers, noisy qubits can result in biased results for early quantum algorithm applications. This is a significant challenge for interpreting results from quantum computer simulations for quantum chemistry, nuclear physics, high energy physics, and other emerging scientific applications. An important class of qubit errors are readout errors. The most basic method to correct readout errors is matrix inversion, using a response matrix built from simple operations to probe the rate of transitions from known initial quantum states to readout outcomes. One challenge with inverting matrices with large off-diagonal components is that the results are sensitive to statistical fluctuations. This challenge is familiar to high energy physics, where prior-independent regularized matrix inversion techniques (`unfolding') have been developed for years to correct for acceptance and detector effects when performing differential cross section measurements. We study various unfolding methods in the context of universal gate-based quantum computers with the goal of connecting the fields of quantum information science and high energy physics and providing a reference for future work. The method known as iterative Bayesian unfolding is shown to avoid pathologies from commonly used matrix inversion and least squares methods.Comment: 13 pages, 16 figures; v2 has a typo fixed in Eq. 3 and a series of minor modification

    Dark and Baryonic Matter in Bright Spiral Galaxies: I.Near-infrared and Optical Broadband Surface Photometry of 30 Galaxies

    Full text link
    We present photometrically calibrated images and surface photometry in the B, V, R, J, H, and K-bands of 25, and in the g, r, and K-bands of 5 nearby bright (Bo_T<12.5 mag) spiral galaxies with inclinations between 30-65 degrees spanning the Hubble Sequence from Sa to Scd. Data are from The Ohio State University Bright Spiral Galaxy Survey, the Two Micron All Sky Survey, and the Sloan Digital Sky Survey Second Data Release. Radial surface brightness profiles are extracted, and integrated magnitudes are measured from the profiles. Axis ratios, position angles, and scale lengths are measured from the near-infrared images. A 1-dimensional bulge/disk decomposition is performed on the near-infrared images of galaxies with a non-negligible bulge component, and an exponential disk is fit to the radial surface brightness profiles of the remaining galaxies.Comment: 28 page

    A comprehensive Maximum Likelihood analysis of the structural properties of faint Milky Way satellites

    Full text link
    We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a Maximum Likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars. This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for `CMD shot-noise'. We find that faint systems are somewhat more elliptical than initially found and ascribe that to the previous use of smoothed maps which can be dominated by the smoothing kernel. As a result, the faintest half of the Milky Way dwarf galaxies (M_V>-7.5) is significantly (4-sigma) flatter (e=0.47+/-0.03) than its brightest half (M_V<-7.5, e=0.32+/-0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in CVnI and UMaII, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but warrants much deeper observations to track evidence of such tidal interaction.Comment: 20 pages, 11 figures, ApJ in press; some typos corrected, magnitude of BooII corrected (thanks go to Shane Walsh for spotting the erroneous original value

    A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    Full text link
    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant frequency with a DC voltage, demonstrating the incorporation of a DC bias into the 3D cavity with no measurable change in its quality factor at room temperature. We also characterize the architecture at millikelvin temperatures and show that the split cavity design maintains a quality factor Qi∌8.8×105Q_\text{i} \sim 8.8 \times 10^5, making it promising for future quantum applications

    Attentional avoidance of high-fat food in unsuccessful dieters

    Get PDF
    Using the exogenous cueing task, this study examined whether restrained and disinhibited eaters differ in their orientation of attention towards and their difficulty to disengage from high versus low-fat food pictures in a relatively short (500 ms) and a long presentation format (1500 ms). Overall, participants in the 500 ms condition showed a tendency to direct attention away from high-fat food pictures compared to neutral pictures. No differential pattern was evident for the 1500 ms condition. Correlational analysis revealed that reduced engagement with high-fat food was particularly pronounced for disinhibited eaters. Although in the short term this seems an adaptive strategy, it may eventually become counterproductive, as it could hinder habituation and learning to cope with seductive characteristics of high-fat food. (C) 2010 Elsevier Ltd. All rights reserved

    The Role of Welfare in Locational Choices:Modelling Intra‐European Migration Decisions Across the Life‐Course

    Get PDF
    In this study, we add to the literature by investigating the role of welfare states in intra‐European migration decisions between 25 countries (2003‐2008). Distinguishing between three welfare programmes (unemployment, family and old‐age benefits) we tested whether social expenditure on each of these arrangements particularly influenced locational choices of individuals within the age groups covered by the respective welfare policy. Findings from a conditional logit model showed a positive impact of spending on family benefits on the locational choices of young adults moving together with children, and of spending on old‐age benefits on the locational choices of individuals close to or above retirement age. In contrast, a negative impact of unemployment spending was found on locational choices in general, and those of working‐age adults in particular. Our results highlight the importance of further disentangling the often‐used general welfare spending measure when studying the link between welfare and migration
    • 

    corecore