23 research outputs found

    Real-time and Multichannel Measurement of Contractility of hiPSC-Derived 3D Skeletal Muscle using Fiber Optics-Based Sensing

    Get PDF
    As the field of cardiac and skeletal muscle tissue engineering expands, so does the need for accurate and reliable systems to generate in vitro 3D tissues and analyze their functional properties. In this study, the Cuore is introduced, a system that integrates sensors based on optical fibers and uses the principle of light interferometry to detect the contraction of 3D Tissue Engineered Skeletal Muscles (3D-TESMs). The technology employed in the Cuore allows for reproducible and multichannel force measurements down to a nano-Newtons resolution while maintaining sterility and permitting continuous non-invasive recording within and outside standard tissue culture incubators. Thanks to the integrated electrodes for electrical pulse stimulation (EPS), 3D-TESMs generated from three independent hiPSC-derived myogenic progenitors (MPs) lines are stimulated and the contractility is recorded over the course of a week. Through the modulation of different EPS parameters, the optimal combination to induce the 3D-TESMs in producing fully fused tetani without causing damage is determined. Furthermore, 3D-TESMs from different lines exhibit characteristic signatures of spontaneous contractility and response to caffeine, verapamil, and the β-agonist clenbuterol. The ease of use, high sensitivity, and the integrated electrodes and sensors make the Cuore an ideal technology to investigate the biology of contractile tissues and their response to drugs.</p

    Meeting report: the 2021 FSHD International Research Congress

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is the second most common genetic myopathy, characterized by slowly progressing and highly heterogeneous muscle wasting with a typical onset in the late teens/early adulthood [1]. Although the etiology of the disease for both FSHD type 1 and type 2 has been attributed to gain-of-toxic function stemming from aberrant DUX4 expression, the exact pathogenic mechanisms involved in muscle wasting have yet to be elucidated [2-4]. The 2021 FSHD International Research Congress, held virtually on June 24-25, convened over 350 researchers and clinicians to share the most recent advances in the understanding of the disease mechanism, discuss the proliferation of interventional strategies and refinement of clinical outcome measures, including results from the ReDUX4 trial, a phase 2b clinical trial of losmapimod in FSHD [NCT04003974]

    Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues

    Get PDF
    Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.</p

    Generation of genetically matched hiPSC lines from two mosaic facioscapulohumeral dystrophy type 1 patients

    Get PDF
    Facioscapulohumeral dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4q resulting in sporadic misexpression of the transcription factor DUX4 in skeletal muscle tissue. In ~4% of families, de novo D4Z4 contractions occur after fertilization resulting in somatic mosaicism with control and FSHD1 cell populations present within the same patient. Reprogramming of mosaic fibroblasts from two FSHD1 patients into human induced pluripotent stem cells (hiPSCs) generated genetically matched control and FSHD1 hiPSC lines. All hiPSC lines contained a normal karyotype, expressed pluripotency genes and differentiated into cells from the three germ layers

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis

    A knock down strategy for rapid, generic, and versatile modelling of muscular dystrophies in 3D-tissue-engineered-skeletal muscle

    Get PDF
    Abstract Background Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput. Methods Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week. Results As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models. Conclusions These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies

    Coupling 3D Printing and Novel Replica Molding for In House Fabrication of Skeletal Muscle Tissue Engineering Devices

    Get PDF
    The transition from 2D to 3D engineered tissue cultures is changing the way biologists can perform in vitro functional studies. However, there has been a paucity in the establishment of methods required for the generation of microdevices and cost-effective scaling up. To date, approaches including multistep photolithography, milling and 3D printing have been used that involve specialized and expensive equipment or time-consuming steps with variable success. Here, a fabrication pipeline is presented based on affordable off-the-shelf 3D printers and novel replica molding strategies for rapid and easy in-house production of hundreds of 3D culture devices per day, with customizable size and geometry. This pipeline is applied to generate tissue engineered skeletal muscles in vitro using human induced pluripotent stem cell-derived myogenic progenitors. These production methods can be employed in any standard biomedical laboratory.</p

    Software Tool for Automatic Quantification of Sarcomere Length and Organization in Fixed and Live 2D and 3D Muscle Cell Cultures In Vitro

    Get PDF
    Sarcomeres are the structural units of the contractile apparatus in cardiac and skeletal muscle cells. Changes in sarcomere characteristics are indicative of changes in the sarcomeric proteins and function during development and disease. Assessment of sarcomere length, alignment, and organization provides insight into disease and drug responses in striated muscle cells and models, ranging from cardiomyocytes and skeletal muscle cells derived from human pluripotent stem cells to adult muscle cells isolated from animals or humans. However, quantification of sarcomere length is typically time consuming and prone to user-specific selection bias. Automated analysis pipelines exist but these often require either specialized software or programming experience. In addition, these pipelines are often designed for only one type of cell model in vitro. Here, we present an easy-to-implement protocol and software tool for automated sarcomere length and organization quantification in a variety of striated muscle in vitro models: Two dimensional (2D) cardiomyocytes, three dimensional (3D) cardiac microtissues, isolated adult cardiomyocytes, and 3D tissue engineered skeletal muscles. Based on an existing mathematical algorithm, this image analysis software (SotaTool) automatically detects the direction in which the sarcomere organization is highest over the entire image and outputs the length and organization of sarcomeres. We also analyzed videos of live cells during contraction, thereby allowing measurement of contraction parameters like fractional shortening, contraction time, relaxation time, and beating frequency. In this protocol, we give a step-by-step guide on how to prepare, image, and automatically quantify sarcomere and contraction characteristics in different types of in vitro models and we provide basic validation and discussion of the limitations of the software tool

    Cytoskeletal disorganization underlies PABPN1-mediated myogenic disability

    Get PDF
    Abstract Muscle wasting and atrophy are regulated by multiple molecular processes, including mRNA processing. Reduced levels of the polyadenylation binding protein nucleus 1 (PABPN1), a multifactorial regulator of mRNA processing, cause muscle atrophy. A proteomic study in muscles with reduced PABPN1 levels suggested dysregulation of sarcomeric and cytoskeletal proteins. Here we investigated the hypothesis that reduced PABPN1 levels lead to an aberrant organization of the cytoskeleton. MURC, a plasma membrane-associated protein, was found to be more abundant in muscles with reduced PABPN1 levels, and it was found to be expressed at regions showing regeneration. A polarized cytoskeletal organization is typical for muscle cells, but muscle cells with reduced PABPN1 levels (named as shPAB) were characterized by a disorganized cytoskeleton that lacked polarization. Moreover, cell mechanical features and myogenic differentiation were significantly reduced in shPAB cells. Importantly, restoring cytoskeletal stability, by actin overexpression, was beneficial for myogenesis, expression of sarcomeric proteins and proper localization of MURC in shPAB cell cultures and in shPAB muscle bundle. We suggest that poor cytoskeletal mechanical features are caused by altered expression levels of cytoskeletal proteins and contribute to muscle wasting and atrophy
    corecore