5 research outputs found

    A national study to assess outcomes of definitive chemoradiation regimens in proximal esophageal cancer

    Get PDF
    Background: Proximal esophageal cancer (EC) is commonly treated with definitive chemoradiation (CRT). The radiation dose and type of chemotherapy backbone are still under debate. The objective of this study was to compare the treatment outcomes of contemporary CRT regimens. Material and Methods: In this retrospective observational cohort study, we included patients with locally advanced squamous cell cancer of the proximal esophagus, from 11 centers in the Netherlands, treated with definitive CRT between 2004 and 2014. Each center had a preferential CRT regimen, based on cisplatin (Cis) or carboplatin-paclitaxel (CP) combined with low (≤50.4 Gy) or high (>50.4 Gy) dose radiotherapy (RT). Differences in overall survival (OS) between CRT regimens were assessed using a fully adjusted Cox proportional hazards and propensity score (PS) weighted model. Safety profiles were compared using a multilevel logistic regression model. Results: Two hundred patients were included. Fifty-four, 39, 95, and 12 patients were treated with Cis-low-dose RT, Cis-high-dose RT, CP-low-dose RT, and CP-high-dose RT, respectively. Median follow-up was 62.6 months (95% CI: 47.9–77.2 months). Median OS (21.9 months; 95% CI: 16.9–27.0 months) was comparable between treatment groups (logrank p = .88), confirmed in the fully adjusted and PS weighted model (p > .05). Grades 3–5 acute adverse events were less frequent in patients treated with CP-low-dose RT versus Cis-high-dose RT (OR 3.78; 95% CI: 1.31–10.87; p = .01). The occurrence of grades 3–5 late toxicities was not different between treatment groups. Conclusion: Our study was unable to demonstrate a difference in OS between the CRT regimens, probably related to the relatively small sample size. Based on the superior safety profile, carboplatin and paclitaxel-based CRT regimens are preferred in patients with locally advanced proximal EC

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs
    corecore