1,868 research outputs found

    Anthelmintic resistance of gastrointestinal cattle nematodes

    Get PDF
    Anthelmintic resistance of parasites in small ruminants, cattle and horses is increasing worldwide as a consequence of the over usage of the currently available products. In Belgium, Cooperia oncophora is the most common cattle nematode in which resistance, especially against macrocyclic lactones, occurs. Once resistance has been diagnosed, a change to another drug with a different mode of action is advised. However, effective anthelmintics will be hardly available in the near future. Therefore, it is important that farmers and veterinarians find a balance between achieving good parasite control and the sustainability of their control strategies. In this way, anthelmintic resistance may be delayed, and the effectiveness of anthelmintic drugs may be prolonged. This requires sensitive detection tools. With a sensitive detection technique, anthelmintic resistance can be diagnosed in a very early stage. Hence, the spread of resistance alleles in the parasite population may be prevented. In this review, different diagnostic assays for the detection of anthelmintic resistance are discussed, an overview is given of the current status of anthelmintic resistance in Belgian cattle, and measures are suggested to avoid or delay the development of anthelmintic resistance

    Demonstrating the potential of Accurate Absolute Cross-grain Stress and Orientation correlation using Electron Backscatter Diffraction

    Get PDF
    We report a first exploration of High-angular-Resolution Electron Backscatter Diffraction, without using simulated Electron Backscatter Diffraction patterns as a reference, for absolute stress and orientation measurements in polycrystalline materials. By co-correlating the pattern center and fully exploiting crystal symmetry and plane-stress, simultaneous correlation of all overlapping regions of interest in multiple direct-electron-detector, energy-filtered Electron Backscatter Diffraction patterns is achieved. The potential for highly accurate measurement of absolute stress, crystal orientation and pattern center is demonstrated on a virtual polycrystalline case-study, showing errors respectively below 20 MPa (or 1e-4 in strain), 7e-5 rad and 0.06 pixels.Comment: Manuscript as accepted for publication in Scripta Materiali

    Theory of Nonequilibrium Spin Transport and Spin Transfer Torque in Superconducting-Ferromagnetic Nanostructures

    Full text link
    Spin transport currents and the spin-transfer torques in voltage-biased superconducting-ferromagnetic nanopillars (SFNFS point contacts) are computed. We develop and implement an algorithm based on the Ricatti formulation of the quasiclassical theory of superconductivity to solve the time-dependent boundary conditions for the nonequilibrium Green's functions for spin transport through the ferromagnetic interfaces. A signature of the nonequilibrium torque is a component perpendicular to the plane spanned by the two ferromagnetic moments. The perpendicular component is absent in normal-metal-ferromagnetic nanopillars (NFNFN) contacts, but is shown to have the same order of magnitude as the in-plane torque for non-equilibrium SFNFS contacts. The out-of-plane torque is due to the rotation of quasiparticle spin by the exchange fields of the ferromagnetic layers. In the ballistic limit the equilibrium torque is related to the spectrum of spin-polarized Andreev bound states, while the {\sl ac} component, for small bias voltages, is determined by the nearly adiabatic dynamics of the Andreev bound states. The nonlinear voltage dependence of the non-equilibrium torque, including the subharmonic gap structure and the high-voltage asymptotics, is attributed to the interplay between multiple Andreev reflections, spin filtering and spin mixing. These properties of spin angular momentum transport may be exploited to control the state of nanomagnets.Comment: 15 pages, 14 figure
    corecore