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Demonstrating the potential of Accurate Absolute Cross-grain Stress and
Orientation correlation using Electron Backscatter Diffraction
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Abstract

We report a first exploration of High-angular-Resolution Electron Backscatter Diffraction, without using
simulated Electron Backscatter Diffraction patterns as a reference, for absolute stress and orientation mea-
surements in polycrystalline materials. By co-correlating the pattern center and fully exploiting crystal
symmetry and plane-stress, simultaneous correlation of all overlapping regions of interest in multiple direct-
electron-detector, energy-filtered Electron Backscatter Diffraction patterns is achieved. The potential for
highly accurate measurement of absolute stress, crystal orientation and pattern center is demonstrated on
a virtual polycrystalline case-study, showing errors respectively below 20 MPa (or 10−4 in strain), 7× 10−5

rad and 0.06 pixels. DOI: https://doi.org/10.1016/j.scriptamat.2018.11.030
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Graphical Abstract

A novel and accessible technique that can provide unprecedented details of grain boundaries (GBs) in
polycrystalline materials, particularly higher accuracy of GB misorientation and GB compatibility stresses
and strains at high spatial resolution, may (i) provide fundamental understanding of GB deformation mech-
anisms, such as dislocation-GB interactions (pile-up, transmission, absorption, void nucleation, etc.) [1, 2],
twinning [3], (nano-)grain rotations [4] and GB sliding [5], and (ii) open up new pathways to design novel
high-performance alloys [6] such as transformation- and twinning-induced plasticity steels [7], shape memory
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alloys [8], self-healing alloys [9, 10], nano-laminated steels [11], metallic glasses [12], metastable high-entropy
alloys [13], etc. [14, 15].

Although quantitative nano-scale crystallography [16, 17, 18, 19] is actively researched by synchrotron
based 3D X-ray diffraction [20], we propose a new variation on the more accessible High-angular-Resolution
Electron Backscatter Diffraction (HR-EBSD) method. While automated 2D-Hough transform-based EBSD
indexing is the standard for texture analysis [21], HR-EBSD, pioneered by Wilkinson et al. [22], provides
an extension to simultaneously measure the stress state by subset-based Digital Image Correlation (DIC)
of the Electron Backscatter Patterns (EBSPs) to a reference EBSP. In absolute HR-EBSD, a simulated
EBSP is used as reference [23, 24, 25], yet, these methods suffer from uncertainties in the calibration of
the experimental geometry, specifically the Pattern Center (PC) location [26, 27, 28, 29, 30, 31, 32, 33],
and inaccurate simulation of experimental EBSP features [34], although developments are ongoing [35]. In
contrast, relative HR-EBSD is much more accurate with errors in elastic strains of ∼10−4 [36, 37]; however,
this approach requires one EBSP in each grain as reference, thus only yielding stress gradients inside grains,
with maximum misorientations of ∼10◦ [38, 39]. As typically the full stress state is not known anywhere in
a grain, absolute stress level determination at all points is impossible, let alone correlation across GBs.

This calls for a paradigm shift in how absolute HR-EBSD is approached. First, for a polycrystalline
structure, all the global Regions Of Interest (gROIs), i.e., overlapping areas, between each EBSP from
each grain can be correlated at once to boost the sensitivity, as shown in Figure 1 for the simple example
of only 1 EBSP in each of 7 grains, constituting 21 EBSP pairs. Second, the sensitivity can be further
enhanced by fully exploiting crystal symmetry, yielding up to 24 gROIs for each EBSP pair (in the case of
cubic symmetry), as shown in Figure 2a, thus resulting in a maximum total of 504 gROIs for the example of
Figure 1, that can simultaneously be correlated. Hence, we report the first exploration of absolute HR-EBSD
to enable highly accurate identification of the absolute stress tensor, crystal orientations and PC coordinates
across GBs, without using simulated EBSPs as reference. This is achieved by fully exploiting the recently
proposed integrated DIC (IDIC) based HR-EBSD framework of Vermeij & Hoefnagels [40], based on a
consistent full-field one-step optimization approach instead of standard two-step subset-based HR-EBSD
algorithms, while taking full advantage of the crystal symmetry, plane stress conditions and correlation of
multiple gROIs. Thereby, full cross-grain correlations are explored and validated on a challenging virtual
stressed polycrystalline case-study.

The determination of the correct set of Degrees of Freedom (DOFs), {λ}, containing the stress and
orientation per EBSP and the PC coordinates, is achieved by minimization of the brightness residual, ri,j,s,

ri,j,s
(
~xi, {λ}

)
= gi

(
~xi
)
− gj

(
~xi + ~ui,j,s(~xi, {λ})

)
, (1)

for each gROI (Ωi,j,s) between each pair of EBSPs gi and gj subjected to the symmetry operator s and
defined by a displacement field ~ui,j,s at pixel position ~xi [40, 41, 42, 43, 44]. This multiple-gROI, multiple
EBSP minimization yields:

{λ} = argmin
λ

N−1∑
i=1

N∑
j=i+1

Ns∑
s=1

∫
Ωi,j,s

[ri,j,s(~xi, {λ})]2 d~x, (2)

where argmin
λ

denotes the minimization with respect to the DOFs {λ}, N is the number of EBSPs in the

correlation and Ns is the number of different symmetry operators. The initial guess for {λ} is iteratively
updated during the optimization until convergence is met. Note that no EBSP is treated as an ”unde-
formed” pattern; instead, the deformed EBSPs are correlated by considering their relative deformation and
orientation, which can be directly related to their absolute deformation and orientation. Since EBSPs orig-
inate from a ∼10 nm thick volume directly beneath the traction-free specimen surface [45], plane-stress is
assumed, as is common in HR-EBSD literature. Generally, however, only the out-of-plane normal Cauchy
stress component is constrained to zero (σ33

i = 0). In this work, however, following [35], also the out-of-plane
shear stress components are constrained, i.e. σ13

i = σ23
i = 0, to maximize sensitivity for all {λ}, while aiming

to accurately measure the remaining in-plane stress components σ11
i , σ22

i , and σ12
i . Additionally, for each

EBSPi, the crystal orientation is included in the DOFs as a set of three Euler angles, fully describing a

2



Figure 1: Case-study of an artificial polycrystalline microstructure of BCC Ferrite with large grain misorientations (see rotated
cubes). The 7 grains fully cover the transverse direction (TD) and normal direction (ND) inverse pole figure (IPF), and are
selected as far apart as possible to ensure that (cubic symmetric) polycrystalline microstructures encountered in practice will
not show larger misorientations than the grains tested here. Their EBSPs, generated by dynamical simulations and stressed
(elastically strained) according to table 1, are corrected by division of an average background, collected over many grain
orientations (similar to experiments). 21 gROIs are drawn as colored lines in the EBSPs, each illustrating an overlap between
a pair of EBSPs. The gROI label numbers denote the paired EBSPs. Note that EBSP1 is shown with the original background.

rotation tensor Ri in the global specimen coordinate system. Furthermore, the DOFs of one set of global
(or absolute) PC coordinates (i.e., location ~xpc from the top-left in the EBSP and detector distance, dd,
both defined in pixels or px) is added to the optimization routine, while the relative PC changes between
EBSPs are assumed to be known from the beam shifts. Altogether, the list of DOFs consists of:

{λ} = {..., σ11
i , σ

22
i , σ

12
i , Eu

X
i , Eu

Y
i , Eu

Z
i , ..., pc

x, pcy, dd}, (3)

with 1 ≤ i ≤ N .
Next, we need the displacement field ~ui,j,s(~xi, {λ}) for each gROI to perform the correlation. Let us

consider EBSPi, consisting of a field of gray values gi, originating from a cubic symmetric material point
i which has a certain crystal orientation, defined by rotation tensor Ri, and is stressed by Cauchy stress
tensor σi, both defined in the global specimen coordinate system. When comparing any two EBSPs in a
(poly)crystalline microstructure, e.g., EBSPi and EBSPj , a pixel in EBSPi with position ~xi, within gROI
Ωi,j,s, can be found in EBSPj at position ~xj = ~xi + ~ui,j,s(~xi, {λ}). As a typical example, Figure 1 shows
dynamically simulated EBSPs for each grain, in which the overlapping areas, or gROIs, are automatically
calculated for each pair of EBSPs, based on the displacement field ~ui,j,s(~xi, {λ}), which was derived in [40]
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Figure 2: Full cubic symmetry assisted correlation of EBSP2 with EBSP7, concurrent to Figure 3c. (a) All 23 non-zero gROIs
in both EBSPs, labeled by color. (b) Examples of EBSP residual fields (r2,7,4, r2,7,11, r2,7,17, r2,7,23), highlighted in (a), at
initial guess and after convergence.

as function of the DOFs {λ} and is based on the EBSP formation geometry:

~ui,j,s(~xi, {λ}) =
ddj

~ez · Fr · ~x
′′
i

(
Fr · ~x

′′

i −
(
~ez · Fr · ~x

′′

i

)
~ez

)
+ ~xpcj − ~xi, (4)

wherein we define ~x
′′

i = ddi~ez + ~xi − ~xpci , with ~ez a normal unit vector on the detector screen. The relative
deformation gradient tensor equals Fr = Ft

T · Fi,j,s · Ft, in which Ft is the rotation tensor specifying the
specimen tilt, while Fi,j,s = Fj ·Rs ·F−1

i denotes the relative deformation gradient tensor between material
point i and j. Fi and Fj are the absolute deformation gradient tensors of material points i and j, with
respect to an undeformed crystal that is aligned with the specimen coordinate system, which are uniquely
defined by crystal orientation Ri and Rj and right stretch tensors, Ui and Uj , as e.g. Fi = Ri ·Ui. The
additional rotation tensor Rs is one of a number of possible symmetry rotation operators specific to the
symmetry of the crystal system. Rs can thus vary to result in a number of possibilities for Fr, resulting
in the existence of multiple gROIs between a set of EBSPs, as demonstrated in Figure 2a. This feature
has so far never been exploited in HR-EBSD. Finally, we relate the stress state of the crystal in its current
configuration, i.e. the Cauchy stress tensor σi, to Ri, Ui and the fourth order elastic stiffness tensor 4C
[40]:

σi =
Ri ·Ui

det(Ri ·Ui)
· 4C :

1

2

(
(Ri ·Ui)

T ·Ri ·Ui − I
)
·
(
Ri ·Ui

)T
. (5)

This non-linear equation is solved iteratively for Ui.
The performance in terms of flexibility, robustness and accuracy of the novel non-simulation-based ab-

solute HR-EBSD framework is evaluated on a challenging case-study of a virtual stressed polycrystalline
microstructure, explained in Figure 1 and table 1. The 12 bit EBSPs of 1000 × 1000 px, with realistic
background profiles, are dynamical simulated for a 20 keV incident electron beam, using EMsoft [46, 47],
based on a Monte Carlo simulation of the electron depth, energy, and intensity profile variation. Using
appropriate lattice parameters, corresponding to the elastically strained (i.e., stressed) unit cell for the re-
quired crystal orientation, each EBSP is generated for a direct electron EBSD detector [48] with 19.5 keV
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Table 1: Applied Von Mises (VM) stress and randomly varied in-plane components in GPa for each EBSP, while the out-of-plane
stress components are constrained to zero. Note that EBSP1a has the same crystal orientation as EBSP1.

σVM σ11 σ22 σ12

EBSP1 1 0.435 -0.181 0.482
EBSP1a 0.5 -0.453 -0.443 -0.129
EBSP2 1 -0.129 0.920 -0.007
EBSP3 1 0.147 -0.478 -0.476
EBSP4 1 -0.221 0.667 0.345
EBSP5 1 -0.888 0.018 0.255
EBSP6 1 -0.522 -0.431 0.505
EBSP7 1 0.710 -0.368 0.181

energy thresholding [49], Gaussian noise level of 2%, and PC coordinates of pcx≈500 px, pcy≈300 px and
dd≈500 px, with variations to simulate electron beam scanning.

The accuracy of the non-simulation-based absolute HR-EBSD algorithm is quantified by the absolute
error metric εα = |α−αref |, where α is a DOF and αref the simulated reference value. The absolute errors of
the stresses, orientations and PC coordinates are, respectively, expressed in units of GPa, radians and pixels
(px) in Figure 3. To test robustness against experimental uncertainties, all virtual tests are initialized with
a large offset in DOFs: a random orientation error of 1◦, zero stress and 5 px PC errors. A full correlation
of the 7 EBSPs, using all 460 available (out of maximum 504) gROIs in a single optimization step, with all
orientation and in-plane stress components of the 7 EBSPs and the 3 global PC coordinates for a total of
45 DOFs, results in convergence with low maximum errors in stress, orientation and PC of 30 MPa, 10−4

rad and 0.1 px, respectively, see Figure 3a. Complete correlation of all DOFs has not been achieved in the
literature, yet, extensive testing showed that this is only possible when at least 5 highly misoriented EBSPs
are included in the correlation. This demonstrates the importance of the here-proposed paradigm shift to
simultaneously correlate many gROIs from multiple EBSPs, in our flexible IDIC formulation, which would
be unfeasible for the conventional two-step subset-based HR-EBSD algorithms.

When even higher accuracy is desired, a small assumption on the in-plane stress state can be included.
Often one in-plane stress component in one EBSP is known due to stress relaxation at the specimen edge or
by slit milling [50], or by attaining other insights on the stress state. This knowledge is sufficient to accurately
correlate any combination of 2 (or more) EBSPs. This is demonstrated here by assuming knowledge of σ11

for the first EBSP in each correlation, with Figure 3b and c, respectively, showing such a correlation for 7
and only 2 EBSPs, yielding higher accuracies in stresses, orientations and PC coordinates. Notably, for 7
EBSPs, PC accuracies drop below 0.001 px for pcy and dd, suggesting a highly stable correlation. Figure 3c
shows the correlation between EBSP2 and EBSP7, with the residual fields for 4 of the 23 gROIs shown in
Figure 2b, demonstrating efficient minimization of the residual fields and optimization of the DOFs towards
convergence. Subsequently, Figure 3d shows the accuracies of all available combinations of 2 EBSPs. The
successful correlation of EBSP1 with EBSP1a, with same orientation yet different stress state, demonstrates
that a misorientation between 2 EBSPs is not required.

Alternatively, stress components from different grains can be interlinked in the correlation by benefiting
from, e.g., stress compatibility close to two sides of the GB. This approach is briefly tested in combination
(6-7)* in Figure 3d, by assuming that the stress components σ11

6 and σ11
7 are linearly related, which is found

to be equally accurate. Overall, errors of stress, orientation and PC components, respectively, remain below
∼20 MPa (or < 10−4 in strain), ∼7 × 10−5 rad and ∼0.06 px, while averaging ∼7 MPa, ∼2 × 10−5 rad
and ∼0.01 px in this virtual case-study. Preliminary tests show equivalent accuracies when initial guesses
vary or when 8 bit or 20% noise EBSPs are correlated, while increasing dd to 0.6 decreases the accuracy by
a factor of ∼2 (based on a preliminary test). No clear trend over the different combinations of EBSPs is
observed, suggesting the powerful capability to correlate any pair of EBSPs under one limited assumption.

The accuracies achieved in this virtual case-study of dynamically simulated EBSPs, demonstrates that
the IDIC based HR-EBSD method has the potential to perform absolute HR-EBSD without using simu-
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Figure 3: Performance evaluation of the cross-grain absolute HR-EBSD algorithm. (a-b-c) Convergence behavior, in absolute
errors, of simultaneous correlation of multiple EBSPs, including all 3 orientation and in-plane stress DOFs per EBSP, as well
as the global PC DOFs (a) of all 7 EBSPs, (b) of all 7 EBSPs, with σ11

1 assumed known and (c) of EBSP2 and EBSP7

(corresponding to Figure 2), with σ11
i = σ11

2 assumed known. (d) Converged absolute errors, for correlation (similar to (c),
with σ11

i known) of all combinations (i-j) of 2 EBSPs, with dashed lines showing the mean absolute errors. For combination
(6-7)*, only σ11

i /σ11
j = σ11

6 /σ11
7 is assumed known.
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lated EBSPs as reference, i.e., non-simulation-based. Direct comparison to state-of-the-art simulation-based
absolute HR-EBSD methods is currently not possible, as only experimental investigations are available in
the literature without virtual or direct validation of accuracies. Importantly however, the level of accuracy
of the relative intergranular (cross-grain) strains and misorientations, also better than 10−4 in this work,
has not been achieved, or even attempted, in (HR-)EBSD literature. Additionally, accurate measurement of
PC coordinates, performed here alongside the correlation of stresses and orientations, is highly relevant and
poses challenges to state-of-the-art absolute [28, 30, 31, 32, 35] and even relative [39, 40] HR-EBSD. Yet,
experimental validation is required, preferably using energy-filtered direct electron EBSD detectors [49],
to study the effects of incident voltage, pattern background, detector noise, non-uniform gain, (relative)
pattern quality, band anisotropy, uncertainties in the elastic constants, etc. Conventional EBSD detectors
yield energy (and thus Kikuchi bandwidth) variations over the detector screen [34] and can have problematic
optical distortions [29], diminishing the method’s practical accuracy. However, the flexible and consistent
IDIC framework can be adapted to correct for the optical distortion by introducing hierarchical mapping
functions that describe the interaction of the imaging process with the EBSP formation [51, 52], allowing
much room for further optimization. Finally, uncertainties in the specimen tilt cause errors in the absolute
crystal orientation [53], plane stress assumptions and relative PC coordinates [37] though the relative PC
error is negligible when scanning around a grain boundary (e.g. for a 10 × 10 µm scan the error in pcy is
∼0.0004 px and ∼0.002 px, respectively, for tilt uncertainties of ∼0.1◦ and ∼1◦ ). Hence, it seems wise to
include the specimen tilt as a DOF in the correlations or to explore other routes for accurate tilt calibration
[53].

In summary, we propose a non-simulation-based absolute High-angular-Resolution EBSD approach that
takes full advantage of plane stress assumptions, the crystal symmetry in an EBSD pattern, and the ability
to correlate multiple regions of interest from multiple patterns in one optimization step. Validation on a chal-
lenging case-study of a virtual stressed polycrystalline, cubic-symmetric, microstructure shows, in theory,
the potential to robustly and highly accurately provide the absolute stress state and crystal orientation in all
grains, while simultaneously determining the Pattern Center coordinates. Warranting further development
and experimental validation, this method could open up possibilities of advanced high-resolution character-
ization of absolute stress fields and absolute orientations on both sides of grain boundaries in polycrystalline
materials.

The authors thank Clemens Verhoosel, Hans van Dommelen and Marc Geers for discussions. MDG
acknowledges financial support from an ONR Vannevar Bush Faculty Fellowship (N00014-16-1-2821).
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