170 research outputs found

    Measurements of Gas‐Phase Inorganic and Organic Acids from Biomass Fires by Negative‐Ion Proton‐Transfer Chemical‐Ionization Mass Spectrometry

    Get PDF
    [1] Emissions from 34 laboratory biomass fires were investigated at the combustion facility of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana. Gas-phase organic and inorganic acids were quantified using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform infrared spectroscopy (OP-FTIR), and proton-transfer-reaction mass spectrometry (PTR-MS). NI-PT-CIMS is a novel technique that measures the mass-to-charge ratio (m/z) of ions generated from reactions of acetate (CH3C(O)O−) ions with inorganic and organic acids. The emission ratios for various important reactive acids with respect to CO were determined. Emission ratios for isocyanic acid (HNCO), 1,2 and 1,3-benzenediols (catechol, resorcinol), nitrous acid (HONO), acrylic acid, methacrylic acid, propionic acid, formic acid, pyruvic acid, and glycolic acid were measured from biomass burning. Our measurements show that there is a significant amount of HONO in fresh smoke. The NI-PT-CIMS measurements were validated by comparison with OP-FTIR measurements of HONO and formic acid (HCOOH) and with PTR-MS measurements of HCOOH

    Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    Get PDF
    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff ) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OPFTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg-1/, acetic acid (2.41 g kg-1/, nitrous acid (HONO, 0.61 g kg-1/, and other trace gases such as glycolaldehyde (0.90 g kg-1/ and formic acid (0.36 g kg-1/ are signific-1ant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg-1, an SSA of ~0.91, and an AAE of ~3.50, with the latter implying that about 86% of the aerosol absorption at 401 nm is due to BrC

    Malignant Transformation of an HNF1a-Inactivated Hepatocellular Adenoma to Hepatocellular Carcinoma

    Get PDF
    Hepatocellular adenomas (HCA) are rare benign tumors of the liver, occurring predominantly in females using oral contraceptives. Our case describes a 66-year-old woman presenting with a palpable mass in her upper abdomen. Contrast-enhanced computed tomography and magnetic resonance imaging showed a large exophytic mass protruding from the caudal border of liver segments IV and V, without visible metastases. Laparoscopic resection of the tumor and gallbladder was performed. Histopathological examination showed a hepatocellular carcinoma with areas of HNF1a-HCA (H-HCA). This case shows that malignant transformation is possible in H-HCA. We present our preoperative decision-making process, as well as the role of imaging techniques in this rare case

    Robot-Assisted Laparoscopic Resection of a Todani Type II Choledochal Malformation

    Get PDF
    Choledochal malformation (CM) comprise various congenital cystic dilatations of the extrahepatic and/or intrahepatic biliary tree. CM is classified into five different types. Our case describes a 58-year-old man presenting with acute abdominal pain. Further examination showed a Todani type II CM. Treatment for type II is complete cyst excision without the need for an extrahepatic bile duct resection. A robot-assisted laparoscopic resection of the CM was performed and the patient recovered without complications. Pathology results showed a Todani type II malformation in which complete squamous metaplasia has occurred. In this paper, we report, to the best of our knowledge, the first description of a robot-assisted laparoscopic resection of a type II CM

    B Cells as Prognostic Biomarker After Surgery for Colorectal Liver Metastases

    Get PDF
    Background: The aim of this study was to identify more accurate variables to improve prognostication of individual patients with colorectal liver metastases (CRLM). Clinicopathological characteristics only partly explain the large range in survival rates. Methods: MessengerRNA expression profiles of resected CRLM of two patient groups were analysed by mRNA sequencing: poor survivors (death from recurrent disease 60 months after surgery). Tumour and adjacent liver parenchyma samples were analysed. Results: MessengerRNA expression profiling of the tumour samples identified 77 genes that were differentially expressed between the two survival groups at a False Discovery Rate (FDR) <0.1. In the adjacent liver parenchyma samples only one gene, MTRNR2L1, showed significantly higher expression in the good survivors. Pathway analysis showed higher expression of immune-related and stroma-related genes in tumour samples from good survivors. Expression data was then validated by immunohistochemistry in two cohorts comprising a total of 125 patients. Immunohistochemical markers that showed to be associated with good survival in the total cohort were: high K/L+ infiltration in tumour stroma [p = 0.029; OR 2.500 (95% CI 1.100–5.682)] and high CD79A+ infiltration in tumour stroma [p = 0.036; OR 2.428 (95%CI 1.062–5.552)]. Conclusions: A high stromal infiltration of CD79A+ B cells and K/L+ plasma cells might be favourable prognostic biomarkers after surgery for CRLM
    • 

    corecore