4,099 research outputs found

    Identification of a polymer growth process with an equilibrium multi-critical collapse phase transition: the meeting point of swollen, collapsed and crystalline polymers

    Full text link
    We have investigated a polymer growth process on the triangular lattice where the configurations produced are self-avoiding trails. We show that the scaling behaviour of this process is similar to the analogous process on the square lattice. However, while the square lattice process maps to the collapse transition of the canonical interacting self-avoiding trail model (ISAT) on that lattice, the process on the triangular lattice model does not map to the canonical equilibrium model. On the other hand, we show that the collapse transition of the canonical ISAT model on the triangular lattice behaves in a way reminiscent of the θ\theta-point of the interacting self-avoiding walk model (ISAW), which is the standard model of polymer collapse. This implies an unusual lattice dependency of the ISAT collapse transition in two dimensions. By studying an extended ISAT model, we demonstrate that the growth process maps to a multi-critical point in a larger parameter space. In this extended parameter space the collapse phase transition may be either θ\theta-point-like (second-order) or first-order, and these two are separated by a multi-critical point. It is this multi-critical point to which the growth process maps. Furthermore, we provide evidence that in addition to the high-temperature gas-like swollen polymer phase (coil) and the low-temperature liquid drop-like collapse phase (globule) there is also a maximally dense crystal-like phase (crystal) at low temperatures dependent on the parameter values. The multi-critical point is the meeting point of these three phases. Our hypothesised phase diagram resolves the mystery of the seemingly differing behaviours of the ISAW and ISAT models in two dimensions as well as the behaviour of the trail growth process

    On the orientational ordering of long rods on a lattice

    Get PDF
    We argue that a system of straight rigid rods of length k on square lattice with only hard-core interactions shows two phase transitions as a function of density, rho, for k >= 7. The system undergoes a phase transition from the low-density disordered phase to a nematic phase as rho is increased from 0, at rho = rho_c1, and then again undergoes a reentrant phase transition from the nematic phase to a disordered phase at rho = rho_c2 < 1.Comment: epl.cl

    Unbiased sampling of globular lattice proteins in three dimensions

    Get PDF
    We present a Monte Carlo method that allows efficient and unbiased sampling of Hamiltonian walks on a cubic lattice. Such walks are self-avoiding and visit each lattice site exactly once. They are often used as simple models of globular proteins, upon adding suitable local interactions. Our algorithm can easily be equipped with such interactions, but we study here mainly the flexible homopolymer case where each conformation is generated with uniform probability. We argue that the algorithm is ergodic and has dynamical exponent z=0. We then use it to study polymers of size up to 64^3 = 262144 monomers. Results are presented for the effective interaction between end points, and the interaction with the boundaries of the system

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces

    Full text link
    Dynamics of spreading of small droplets on surfaces has been studied by the molecular dynamics method. Simulations have been performed for mixtures of solvent and dimer, and solvent and tetramer droplets. For solvent particles and dimers, layering occurs leading to stepped droplet shapes. For tetramers such shapes occur for relatively deep and strong surface potentials only. For wider and more shallow potentials, more rapid spreading and rounded droplet shapes occur. These results are in accordance with experimental data on small non - volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page

    Elastic Energy and Phase Structure in a Continuous Spin Ising Chain with Applications to the Protein Folding Problem

    Get PDF
    We present a numerical Monte Carlo analysis of a continuos spin Ising chain that can describe the statistical proterties of folded proteins. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a cross-over transition. We also compare the predictions of the model to a phenomenological elastic energy formula, proposed by Huang and Lei to describe folded proteins.Comment: 12 pages, 23 figures, RevTeX 4.

    Pattern formation driven by nematic ordering of assembling biopolymers

    Full text link
    The biopolymers actin and microtubules are often in an ongoing assembling/disassembling state far from thermal equilibrium. Above a critical density this leads to spatially periodic patterns, as shown by a scaling argument and in terms of a phenomenological continuum model, that meets also Onsager's statistical theory of the nematic--to--isotropic transition in the absence of reaction kinetics. This pattern forming process depends much on nonlinear effects and a common linear stability analysis of the isotropic distribution of the filaments is often misleading. The wave number of the pattern decreases with the assembling/disassembling rate and there is an uncommon discontinuous transition between the nematic and the periodic state.Comment: 4 pages, 3 figure

    Splitting of Andreev levels in a Josephson junction by spin-orbit coupling

    Full text link
    We consider the effect of spin-orbit coupling on the energy levels of a single-channel Josephson junction below the superconducting gap. We investigate quantitatively the level splitting arising from the combined effect of spin-orbit coupling and the time-reversal symmetry breaking by the phase difference between the superconductors. Using the scattering matrix approach we establish a simple connection between the quantum mechanical time delay matrix and the effective Hamiltonian for the level splitting. As an application we calculate the distribution of level splittings for an ensemble of chaotic Josephson junctions. The distribution falls off as a power law for large splittings, unlike the exponentially decaying splitting distribution given by the Wigner surmise -- which applies for normal chaotic quantum dots with spin-orbit coupling in the case that the time-reversal symmetry breaking is due to a magnetic field.Comment: 6 pages, 3 figure

    Phases and Transitions in Phantom Nematic Elastomer Membranes

    Full text link
    Motivated by recently discovered unusual properties of bulk nematic elastomers, we study a phase diagram of liquid-crystalline polymerized phantom membranes, focusing on in-plane nematic order. We predict that such membranes should enerically exhibit five phases, distinguished by their conformational and in-plane orientational properties, namely isotropic-crumpled, nematic-crumpled, isotropic-flat, nematic-flat and nematic-tubule phases. In the nematic-tubule phase, the membrane is extended along the direction of {\em spontaneous} nematic order and is crumpled in the other. The associated spontaneous symmetries breaking guarantees that the nematic-tubule is characterized by a conformational-orientational soft (Goldstone) mode and the concomitant vanishing of the in-plane shear modulus. We show that long-range orientational order of the nematic-tubule is maintained even in the presence of harmonic thermal luctuations. However, it is likely that tubule's elastic properties are ualitatively modified by these fluctuations, that can be studied using a nonlinear elastic theory for the nematic tubule phase that we derive at the end of this paper.Comment: 12 pages, 4 eps figures. To appear in PR

    Microscopic Model for Granular Stratification and Segregation

    Full text link
    We study segregation and stratification of mixtures of grains differing in size, shape and material properties poured in two-dimensional silos using a microscopic lattice model for surface flows of grains. The model incorporates the dissipation of energy in collisions between rolling and static grains and an energy barrier describing the geometrical asperities of the grains. We study the phase diagram of the different morphologies predicted by the model as a function of the two parameters. We find regions of segregation and stratification, in agreement with experimental finding, as well as a region of total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm
    • …
    corecore