256 research outputs found

    New Insights Into Dye-sensitized Solar Cells With Polymer Electrolytes

    Get PDF
    Polymer electrolytes or gel polymer electrolytes are interesting alternatives to substitute liquid electrolytes in dye-sensitized solar cells (DSSC). The interest in this research field is growing continuously, reflected in the increase in the number of papers published each year concerning these materials. This feature article presents a brief review of the history and development of polymer electrolytes aiming at applications in DSSC. Recent improvements achieved by modifications of the composition and by introduction of additives such as inorganic nanofillers, organic molecules and ionic liquids are described. The stabilities of DSSC assembled with these materials are also discussed and further improvements that can be introduced to maximize performance of the solar cell, such as photoelectrode modification, will also be presented. © 2009 The Royal Society of Chemistry.193052795294O'Regan, B., GrĂ€tzel, M., (1991) Nature, 353, p. 737GrĂ€tzel, M., (2004) J. Photochem. Photobiol. A, 164, p. 3GrĂ€tzel, M., (2006) C.R. Chim., 9, p. 578Vincent, C.A., (1987) Prog. Solid. State Chem., 17, p. 167Fenton, D.E., Parker, J.M., Wright, P.V., (1973) Polymer, 14, p. 589Armand, M.B., Chabagno, J.M., Duclot In, M.J., (1979) Fast Ion Transport in Solids: Solid State Batteries and Devices, Ed., , P. Vashisha, J. N. Mundy and G. K. Shenoy, North Holland, New YorkYohannes, T., Solomon, T., InganĂ€s, O., (1996) Synth. Met., 82, p. 215Yohannes, T., InganĂ€s, O., (1998) Sol. Energy Mater. Sol. Cells, 51, p. 193Nogueira, A.F., Alonso-Vante, N., De Paoli, M.A., (1999) Synth. Met., 105, p. 23Nogueira, A.F., De Paoli, M.A., (2000) Sol. Energy Mater. Sol. Cells, 61, p. 135Nogueira, A.F., Durrant, J.R., De Paoli, M.A., (2001) Adv. Mater., 13, p. 826Ren, Y., Zhang, Z., Gao, E., Fang, S., Cai, S., (2001) J. Appl. Electrochem., 31, p. 445Gazotti, W.A., SpinacĂ©, M.A.S., Girotto, E.M., De Paoli, M.A., (2000) Solid State Ionics, 130, p. 281Ratner In, M.A., (1987) Polymer Electrolyte Reviews, Ed., (CH. 7). , J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, London, p. 173Nogueira, A.F., Spinace, M.A.S., Gazotti, W.A., Girotto, E.M., De Paoli, M.A., (2001) Solid State Ionics, 140, p. 327Silva, G.G., Lemes, N.H.T., Fonseca, C.N.P., De Paoli, M.A., (1997) Solid State Ionics, 93, p. 105Nogueira, A.F., (2001), Ph.D. Thesis, Universidade Estadual de CampinasNogueira, A.F., De Paoli, M.A., Montanari, I., Monkhouse, R., Nelson, J., Durrant, J.R., (2001) J. Phys. Chem. B, 105, p. 7517Rothenberger, G., Fitzmaurice, D., GrĂ€tzel, M., (1992) J. Phys. Chem., 96, p. 5983Enright, B., Redmond, G., Fitzmaurice, D., (1994) J. Phys. Chem., 98, p. 6195Haque, S.A., Tachibana, Y., Willis, R.L., Moser, J.E., GrĂ€tzel, M., Klug, D.R., Durrant, J.R., (2000) J. Phys. Chem. B, 104, p. 538Kalaignan, G.P., Kang, M.S., Kang, Y.S., (2006) Solid State Ionics, 177, p. 1091Kato, T., Okazaki, A., Hayase, S., (2002) Chem. Commun., p. 363Gray In, F.M., (1987) Polymer Electrolyte Reviews, Ed., (CH. 6). , J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, London, pp. 139Nogueira, V.C., Longo, C., Nogueira, A.F., Soto-Oviedo, M.A., De Paoli, M.-A., (2006) J. Photochem. Photobiol. A, 181, p. 226De Freitas, J.N., Nogueira, V.C., Ito, B.I., Soto-Oviedo, M.A., Longo, C., De Paoli, M.A., Nogueira, A.F., (2006) Int. J. Photoenergy, p. 75483Longo, C., Nogueira, A.F., De Paoli, M.A., Cachet, H., (2002) J Phys. Chem. B, 106, p. 5925MacDonald, J.R., (1987) Impedance Spectroscopy: Emphasizing Solid Materials and Systems, , Wiley, New YorkPapageorgiou, N., GrĂ€tzel, M., Infelta, P.P., (1996) Sol. Energy Mater. Sol. Cells, 44, p. 405DĂŒrr, M., Kron, G., Rau, U., Werner, J.H., Yasuda, A., Nelles, G., (2004) J. Chem. Phys., 121, p. 11374Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., GrĂ€tzel, M., (2003) J. Am. Chem. Soc., 125, p. 1166Zebede, Z., Lindquist, S.E., (1998) Sol. Energy Mater. Sol. Cells, 51, p. 291Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C., (2001) J. Phys. Chem. B, 105, p. 6867Hayamizu, K., Aihara, Y., Araia, S., Price, W.S., (2000) Electrochim. Acta, 45, p. 1313Hayamizu, K., Auharam, Y., Arai, S., Price, W.S., (1998) Solid State Ionics, 107, p. 1De Freitas, J.N., De G. A, S., De Paoli, M.A., Durrant, J.R., Nogueira, A.F., (2008) Electrochim. Acta, 53, p. 7166Chatzivasiloglou, E., Stergiopoulos, T., Kontos, A.G., Alexis, N., Prodromidis, M., Falaras, P., (2007) J. Photochem. Photobiol. A, 192, p. 49Park, J.H., Yum, J.H., Kim, S.Y., Kang, M.S., Lee, Y.G., Lee, S.S., Kang, Y.S., (2008) J. Photochem. Photobiol. A, 194, p. 149Benedetti, J.E., De Paoli, M.A., Nogueira, A.F., (2008) Chem. Commun., p. 1121Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Yanagida, S., (2001) J. Phys. Chem. B, 105, p. 12809Montanari, I., Nelson, J., Durrant, J.R., (2002) J. Phys. Chem. B, 106, p. 12203Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., (2005) J. Phys. Chem. B, 109, p. 12525Kassis, A., Saad, M., (2003) Sol. Energy Mater. Sol. Cells, 80, p. 491Kang, M.S., Kim, J.H., Won, J., Kang, Y.S., (2007) J. Phys. Chem. C, 111, p. 5222Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B., (1998) Nature, 394, p. 456Katsaros, G., Stergiopoulos, T., Arabatzis, I.M., Papadokostaki, K.G., Falaras, P., (2002) J. Photochem. Photobiol. A, 149, p. 191Stergiopoulos, T., Arabatzis, I.M., Katsaros, G., Falaras, P., (2002) Nano Lett., 2, p. 1259Chatzivasiloglou, E., Stergiopoulos, T., Spyrellis, N., Falaras, P., (2005) J. Mater. Process. Tech., 161, p. 234Han, H., Liu, W., Zhang, J., Zhao, X.J., (2005) Adv. Funct. Mater., 15, p. 1940Zhang, J., Han, H., Wu, S., Xu, S., Zhou, C., Yang, Y., Zhao, X., (2007) Nanotechnology, 18, p. 295606Kang, M.S., Ahn, K.S., Lee, J.W., (2008) J. Power Sources, 180, p. 896Akhtar, M.S., Chun, J.M., Yang, O.-B., (2007) Electrochem. Commun., 9, p. 2833Han, H., Bach, U., Cheng, Y.B., Caruso, R.A., (2007) Appl. Phys. Lett., 90, p. 213510Zhang, J., Han, H., Wu, S., Xu, S., Yang, Y., Zhou, C., Zhao, X., (2007) Solid State Ionics, 178, p. 1595Zhang, X., Yang, H., Xiong, H.M., Li, F.Y., Xia, Y.Y., (2006) J. Power Sources, 160, p. 1541Nazmutdinova, G., Sensfuss, S., Schrödner, M., Hinsch, A., Sastrawan, R., Gerhard, D., Himmler, S., Wasserscheid, P., (2006) Solid State Ionics, 177, p. 3141Ito, B.I., De Freitas, J.N., De Paoli, M.A., Nogueira, A.F., (2008) J. Braz. Chem. Soc., 19, p. 688Tu, C.W., Liu, K.Y., Chien, A.T., Yen, M.H., Weng, T.H., Ho, K.C., Lin, K.F., (2008) J. Polym. Sci. A, 46, p. 47Nazeeruddin, M.K., Kay, A., Rodicio, I., GrĂ€tzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Wei, Y., Yin, S., Sato, T., (2006) J. Photochem. Photobiol. A, 181, p. 333Paulsson, H., Hagfeldt, A., Kloo, L., (2003) J. Phys. Chem. B, 107, p. 13665Ganesan, S., Muthuraaman, B., Madhavan, J., Mathew, V., Maruthamuthu, P., Suthanthiraraj, S.A., (2008) Electrochim. Acta, 53, p. 7903Huang, S.Y., Schlichthörl, G., Nozik, A.J., GrĂ€tzel, M., Frank, A.J., (1997) J. Phys. Chem. B, 101, p. 2576Mikoshiba, S., Murai, S., Sumino, H., Hayase, S., (2002) J. Photochem. Photobiol. A, 148, p. 33Murai, S., Mikoshiba, S., Sumino, H., Kato, T., Hayase, S., (2003) Chem. Commun., p. 1534Li, M.Y., Feng, S.J., Fang, S.B., Xiao, X.R., Li, X.P., Zhou, X.M., Lin, Y., (2007) Electrochim. Acta, 52, p. 4858Zhang, J., Yang, Y., Wu, S., Xu, S., Zhou, C., Hu, H., Chen, B., Zhao, X., (2008) Electrochim. Acta, 53, p. 5415Zhang, J., Yang, Y., Wu, S.J., Xu, S., Zhou, C.H., Hu, H., Chen, B.L., Zhao, X.Z., (2008) Nanotechnology, 19, p. 245202Shi, C., Dai, S., Wang, K., Pan, X., Hu, L.Z.L., Kong, F., Guo, L., (2005) Electrochim. Acta, 50, p. 2597Morita, Tanaka, H., Ishikawa, M., Matsuda, Y., (1996) Solid State Ionics, 86, p. 401Dillon, R.E.A., Shriver, D.F., (1999) Chem. Mater., 11, p. 3296Gorlov, M., Kloo, L., (2008) Dalton Trans., p. 2655Longo, C., Freitas, J., De Paoli, M.A., (2003) J. Photochem. Photobiol. A, 159, p. 33De Freitas, J.N., Longo, C., Nogueira, A.F., De Paoli, M.A., (2008) Sol. Energy Mater. Sol. Cells, 92, p. 1110Haque, S.A., Palomares, E., Upadhyaya, H.M., Otley, L., Potter, R.J., Holmes, A.B., Durrant, J.R., (2003) Chem. Commun., p. 3008GrĂŒnwald, R., Tributsch, H., (1997) J. Phys. Chem. B, 101, p. 2564Wang, P., Zakeeruddin, S.M., Moser, J.E., Nazeeruddin, M.K., Sekiguchi, T., GrĂ€tzel, M., (2003) Nat. Mater., 2, p. 402Xia, J., Li, F., Huang, C., Zhaic, J., Jiang, L., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 944Yang, H., Huang, M., Wu, J., Lan, Z., Hao, S., Lin, J., (2008) Mater. Chem. Phys., 110, p. 38Zhang, X., Wang, C.X., Li, F.Y., Xia, Y.Y., (2008) J. Photochem. Photobiol. A, 194, p. 31Huo, Z., Dai, S., Wang, K., Kong, F., Zhang, C., Pan, X., Fang, X., (2007) Sol. Energy Mater. Sol. Cells, 91, p. 1959Wu, J., Lan, Z., Lin, J., Huang, M., Hao, S., Sato, T., Yin, S., (2007) Adv. Mater., 19, p. 4006Wu, J.H., Hao, S., Lan, Z., Lin, J., Huang, M., Huang, Y., Fang, L., Sato, T., (2007) Adv. Funct. Mater, 17, p. 2645Kang, M.S., Kim, J.H., Won, J., Kang, Y.S., (2007) J. Phys. Chem. C, 111, p. 5222Zhu, K., Neale, N.R., Miedaner, A., Frank, A.J., (2007) Nano Lett., 7, p. 69Ishibashi, K., Yamaguchi, R., Kimura, Y., Niwano, M., (2008) J. Electrochem. Soc., 155, p. 10MacAk, J.M., Tsuchiya, H., Ghicov, A., Schmuki, P., (2005) Electrochem. Commun., 7, p. 1133Sun, W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q., Peng, L.M., (2008) J. Am. Chem. Soc., 130, p. 1124Stergiopoulos, T., Ghicov, A., Likodimos, V., Tsoukleris, D.S., Kunze, J., Schmuki, P., Falaras, P., (2008) Nanotechnology, 19, p. 235602Kang, S.H., Kim, J.Y., Kim, Y., Kim, H.H.S., Sung, Y.E., (2007) J. Phys. Chem. C, 111, p. 9614Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K., Grimes, C.A., (2006) J. Phys. D Appl. Phys., 39, p. 2498Pavasupree, S., Jiputti, J., Ngamsinlapasathian, S., Yoshikawa, S., (2008) Mater. Res. Bull., 43, p. 149Flores, I.C., De Freitas, J.N., Longo, C., De Paoli, M.A., Winnischofer, H., Nogueira, A.F., (2007) J. Photochem. Photobiol. A, 189, p. 153Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., Kim, D.Y., (2004) Nanotechnology, 15, p. 1861Brabec, C.J., Arendse, F., Comte, P., Jirousek, M., Lensmann, F., Shkliver, V., GrĂ€tzel, M., (1997) J. Am. Chem. Soc., 80, p. 3157Chen, Z., Tang, Y., Yang, H., Xia, Y., Li, F., Yi, T., Huang, C., (2007) J. Power Sources, 171, p. 990Stathatos, E., Lianos, P., (2007) J. Nanosci. Nanotechnol., 7, p. 555Huang, C.Y., Hsu, Y.C., Chen, J.G., Suryanarayanan, V., Lee, K.M., Ho, K.C., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 2391Uchida, S., Tomiha, M., Takizawa, H., Kawaraya, M., (2004) J. Photochem. Photobiol. A, 164, p. 93Lindstrom, H., Holmberg, A., Magnusson, E., Lindquist, S., Malmqvist, L., Hagfeldt, A., (2001) Nano Lett., 1, p. 97Fujishima, A., Honda, K., (1972) Nature, 238, p. 37Murakami, T.N., Kijitori, Y., Kawashima, N., Miyasaka, T., (2004) J. Photochem. Photobiol. A, 164, p. 187Gutierrez-Tauste, D., Zumeta, I., Vigil, E., Hernandez-Fenollosa, M.A., Domenech, X., Ayllon, J.A., (2005) J. Photochem. Photobiol. A, 175, p. 165Lewis, L.N., Spivack, J.L., Gasaway, S., Williams, E.D., Gui, J.Y., Manivannan, V., Siclovan, O.P., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 1041Stathatos, E., Chen, Y., Dionysiou, D.D., (2008) Sol. Energy Mater Sol. Cells, 92, p. 1358Gregg, B.A., Pichot, P., Ferrere, S., Fields, C.L., (2001) J. Phys. Chem. B, 105, p. 1422Menzies, D., Dai, Q., Cheng, Y.B., Simon, G.P., Spiccia, L., (2005) Mater. Lett., 59, p. 1893Palomares, E., Clifford, J.N., Haque, S.A., Luzt, T., Durrant, J.R., (2003) J. Am. Chem. Soc., 125, p. 475Chapel, S., Chen, S.G., Zaban, A., (2002) Langmuir, 18, p. 3336Kay, A., Gratzel, M., (2002) Chem. Mater., 14, p. 2930Avellaneda, C.O., Gonalves, A.S., Benedetti, J.E., Nogueira Ana, F., Electrochim. Acta, in Pres

    Synthesis And Characterization Of Zno And Zno:ga Films And Their Application In Dye-sensitized Solar Cells

    Get PDF
    Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga 3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa 2O 4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga 3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO:Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm -2), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device. © 2008 The Royal Society of Chemistry.1114871491O'Regan, B., Gratzel, M., (1991) Nature, 353, p. 737. , -740Kroon, J.M., Bakker, N.J., Smit, H.J.P., Liska, P., Thampi, K.R., Wang, P., Zakeeruddin, S.M., Tulloch, G.E., (2007) Prog. Photovoltaics, 15, p. 1. , -18Ma, T., Akiyama, M., Abe, E., Imai, I., (2005) Nano Lett., 5, p. 2543. , -2547Ko, K.H., Lee, Y.C., Jung, Y.J., (2005) J. Colloid Interface Sci., 283, p. 482. , -487Kakiuchi, K., Hosono, E., Fujihara, S., (2006) J. Photochem. Photobiol., A, 179, p. 81. , -86Keis, K., Magnusson, E., Lindstrom, H., Lindquist, S.-E., Hagfeldt, A., (2002) Sol. Energy Mater. Sol. Cells, 73, p. 51. , -58Horiuchi, H., Katoh, R., Hara, K., Yanagida, M., Murata, S., Arakawa, H., Tachiya, M., (2003) J. Phys. Chem. B, 107, p. 2570. , -2574Katoh, R., Furube, A., Tamaki, Y., Yoshihara, T., Murai, M., Hara, K., Murata, S., Tachiya, M., (2004) J. Photochem. Photobiol., A, 166, p. 69. , -74Keis, K., Vayssieres, L., Rensmo, H., Lindquist, S.-E., Hagfeldt, A., (2001) J. Electrochem. Soc., 148, p. 149. , -A155Rensmo, H., Keis, K., Lindstrom, H., Sodergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E., Muhammed, M., (1997) J. Phys. Chem. B, 101, p. 2598. , -2601Minami, T., Sato, H., Nanto, H., Takata, S., (1985) Jpn. J. Appl. Phys., 24, p. 781. , -L784Park, S.-M., Ikegami, T., Ebihara, K., (2006) Thin Solid Films, 513, p. 90. , -94Nonaka, M., Matsushima, S., Mizuno, M., Kobayashi, K., (2002) Chem. Lett., p. 580. , -581Ohkita, H., Cook, S., Ford, T.A., Greenham, N.C., Durrant, J.R., (2006) J. Photochem. Photobiol., A, 182, p. 225. , -230Haque, S.A., Tachibana, Y., Willis, R.L., Moser, J.E., Gratzel, M., Klug, D.R., Durrant, J.R., (2000) J. Phys. Chem. B, 104, p. 538. , -547Haque, S.A., Tachibana, Y., Klug, D.R., Durrant, J.R., (1998) J. Phys. Chem. B, 102, p. 1745. , -1749Gonçalves, A.S., Lima, S.A.M., Davolos, M.R., AntÎnio, S.G., Paiva-Santos, C.O., (2006) J. Solid State Chem., 179, p. 1330. , -1334Roberts, N., Wang, R.P., Sleight, A.W., Warren, W.W., (1998) Phys. Rev. B, 57, p. 5734Wang, R., Sleight, A.W., Cleary, D., (1996) Chem. Mater., 8, p. 433. , -439Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Zydzik, G.J., (1995) J. Appl. Phys., 77, p. 686. , -693Bhosle, V., Tiwari, A., Narayan, J., (2006) J. Appl. Phys., 100, p. 033713. , -033716Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphrybaker, R., Muller, E., Liska, P., Vlachopoulos, N., Gratzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382. , -6390Imai, Y., Watanabe, A., (2005) J. Mater. Sci., 15, p. 743. , -749Willis, R.L., Olson, C., O'Regan, B., Lutz, T., Nelson, J., Durrant, J.R., (2002) J. Phys. Chem. B, 106, p. 7605. , -7613Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., (2005) J. Phys. Chem. B, 109, p. 12525. , -1253

    Incorporation Of Nanocrystals With Different Dimensionalities In Hybrid Tio2/p3ht Solar Cells

    Get PDF
    We investigate the effect of TiO2 nanoparticles-nanospheres and nanorods-inserted in the poly(3-hexylthiophene) (P3HT) matrix of TiO2?P3HT inverted hybrid solar cells. X-ray diffraction, high-resolution transmission electron microscopy, small-angle x-ray scattering, photoluminescence, and photoelectrochemical experiments were employed to investigate the structure, morphology, and photoactivity of TiO2 nanoparticles modified with 2-thiopheneacetic acid, mixed or not with P3HT. Both TiO2 nanospheres and TiO2 nanorods presented a good dispersion in the polymer matrix. The incorporation of TiO2 nanospheres and nanorods has improved the photocurrent generation, and devices with efficiency values up to 1.35% were obtained. Our results reveal that the nanoscale morphology enables an enhanced interfacial area for exciton dissociation. In particular, the nanospheres contribute with their high specific area, and the nanorods contribute with their high aspect ratio.51Lee, C.-K., Pao, C.-W., Chen, C.-W., Correlation of nanoscale organizations of polymer and nanocrystals in polymer/inorganic nanocrystal bulk heterojunction hybrid solar cells: Insights from multiscale molecular simulations (2013) Energy Environ. Sci., 6, pp. 307-315Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Hybrid nanorod: Polymer solar cells (2002) Science, 295, pp. 2425-2427Sian, S., Chen, C.-W., Polymer-metal-oxide hybrid solar cells (2013) J. Mater. Chem. A, 1, pp. 10574-10591Das, J., A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells (2010) J. Mater. Chem., 20, pp. 4425-4431Cozzoli, P.D., Kornowski, A., Weller, H., Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods (2003) J. Am. Chem. Soc., 125, pp. 14539-14548Zeng, T.W., A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices (2006) Nanotechnology, 17, p. 5387Yang, P., TiO2 nanowire electron transport pathways inside organic photovoltaics (2013) Phys. Chem. Chem. Phys., 15, pp. 4566-4572Lin, Y., Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding (2012) Macromolecules, 45, pp. 8665-8673Ranjitha, A., Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer (2014) Superlattices Microstruct., 74, pp. 114-122Bolognesi, M., The effect of selective contact electrodes on the interfacial charge recombination kinetics and device efficiency of organic polymer solar cells (2011) Phys. Chem. Chem. Phys., 13, pp. 6105-6109Mor, G.K., High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays (2007) Appl. Phys. Lett., 91, p. 152111Planells, M., Oligothiophene interlayer effect on photocurrent generation for hybrid TiO2/P3HT solar cells (2014) Appl. Mater. Interfaces, 6, pp. 17226-17235Freitas, F.S., Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells (2012) Phys. Chem. Chem. Phys., 14, pp. 11990-11993Liu, K., Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer (2014) Nanoscale, 6, pp. 6180-6186Lin, Y.-Y., Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells (2009) J. Am. Chem. Soc., 131, pp. 3644-3649Eom, S.H., Roles of interfacial modifiers in hybrid solar cells: Inorganic/polymer bilayer versus inorganic/polymer: Fullerene bulk heterojunction (2014) Appl. Mater. Interfaces, 6, pp. 803-810Ravirajan, P., Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer (2006) J. Phys. Chem. B, 110, pp. 7635-7639Abate, A., Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells (2013) J. Am. Chem. Soc., 135, pp. 13538-13548Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering (1995) J. Appl. Cryst., 28, pp. 717-728Beaucage, G., Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension (1996) J. Appl. Cryst., 29, pp. 134-146Beaucage, G., Kammler, H.K., Pratsinis, S.E., Particle size distributions from smallangle scattering using global scattering functions (2004) J. Appl. Cryst., 37, pp. 523-535Khatri, I., Similar device architectures for inverted organic solar cell and laminated solid-state dye-sensitized solar cells (2012) ISRN Electron., 10Choi, H.C., Jung, Y.M., Kim, S.B., Size effects in the Raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38Li, G., Polymer self-organization enhances photovoltaic efficiency (2005) J. Appl. Phys., 98, p. 43704Salim, T., Solvent additives and their effects on blend morphologies of bulk heterojunctions (2011) J. Mater. Chem., 21, pp. 242-250Hwang, I.W., Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive (2008) J. Appl. Phys., 104, p. 033706Nguyen, H.Q., Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly (3-hexylthiophene) triblock copolymer (2013) Polym. Chem., 4, pp. 462-465Prosa, T.J., X-ray structural studies of poly(3-alkylthiophenes): An example of an inverse comb (1992) Macromolecules, 25, p. 4364De Freitas, J.N., Connecting the (quantum) dots: Towards hybrid photovoltaic devices based on chalcogenide gels (2012) Phys. Chem. Chem. Phys., 14, pp. 15180-15184Yang, P., Identifying effects of TiO2 nanowires inside bulk heterojunction organic photovoltaics on charge diffusion and recombination (2014) J. Mater. Chem. C, 2, pp. 4922-4927Grancini, G., Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells (2012) Adv. Funct. Mater., 22, pp. 2160-2166Liao, H.-C., Diketopyrrolopyrrole-based oligomer modified TiO2 nanorods for airstable and all solution processed poly(3-hexylthiophene): TiO2 bulk heterojunction inverted solar cell (2012) J. Mater. Chem., 22, pp. 10589-1059

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
    • 

    corecore