7,087 research outputs found

    On particle production for high energy neutrino beams

    Get PDF
    Analytical formulae for the calculation of secondary particle yields in p-A interactions are given. These formulae can be of great practical importance for fast calculations of neutrino fluxes and for designing new neutrino beam-lines. The formulae are based on a parameterization of the inclusive invariant cross sections for secondary particle production measured in p-Be interactions. Data collected in different energy ranges and kinematic regions are used. The accuracy of the fit to the data with the empirical formulae adopted is within the experimental uncertainties. Prescriptions to extrapolate this parameterization to finite targets and to targets of different materials are given. The results obtained are then used as an input for the simulation of neutrino beams. We show that our approach describes well the main characteristics of measured neutrino spectra at CERN. Thus it may be used in fast simulations aiming at the optimisation of the proposed long-baseline neutrino beams at CERN and FNAL. In particular we will show our predictions for the CNGS beam from CERN to Gran Sasso.Comment: 18 pages, 10 figures. Submitted to The European Physics Journal

    Prospects of measuring sin22Θ13\sin^2 2\Theta_{13} and the sign of Δm2\Delta m^2 with a massive magnetized detector for atmospheric neutrinos

    Get PDF
    The pattern of oscillation parameters emerging from current experimental data can be further elucidated by the observation of matter effects. In contrast to planned experiments with conventional neutrino beams, atmospheric neutrinos offer the possibility to search for Earth-induced matter effects with very long baselines. Resonant matter effects are asymmetric on neutrinos and anti-neutrinos, depending on the sign of Δm2\Delta m^2. In a three-generation oscillation scenario, this gives access to the mass hierarchy of neutrinos, while the size of the asymmetry would measure the admixture of electron neutrinos to muon/tau neutrino oscillations (the mixing angle Θ13\Theta_{13}). The sensitivity to these effects is discussed after the detailed simulation of a realistic experiment based on a massive detector for atmospheric neutrinos with charge identification. We show how a detector, which measure and distinguish between νμ\nu_\mu and νˉμ\bar{\nu}_\mu charged current events, might be sensitive to matter effects using atmospheric neutrinos, provided the mixing angle Θ13\Theta_{13} is large enough.Comment: (8 pages, 8 figures, submitted to Eur.Phys.J.C

    Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    Get PDF
    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like Neutrino Factories and Beta Beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kton iron detector and a high energy Beta Beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ13\theta_{13} values greater than 4^\circ.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors (sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ

    Response of microchannel plates to single particles and to electromagnetic showers

    Get PDF
    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.Comment: Paper submitted to NIM

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    A Beta Beam complex based on the machine upgrades for the LHC

    Get PDF
    The Beta Beam CERN design is based on the present LHC injection complex and its physics reach is mainly limited by the maximum rigidity of the SPS. In fact, some of the scenarios for the machine upgrades of the LHC, particularly the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very synergic with the construction of a higher γ\gamma Beta Beam. At the energies that can be reached by this machine, we demonstrate that dense calorimeters can already be used for the detection of ν\nu at the far location. Even at moderate masses (40 kton) as the ones imposed by the use of existing underground halls at Gran Sasso, the CP reach is very large for any value of θ13\theta_{13} that would provide evidence of νe\nu_e appearance at T2K or NOν\nuA (θ133\theta_{13}\geq 3^\circ). Exploitation of matter effects at the CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy in significant areas of the θ13δ\theta_{13}-\delta plane

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM
    corecore