17 research outputs found

    Meeting report : Neuropathology and Neuropharmacology of Monoaminergic systems

    Get PDF
    The third EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” Annual Conference entitled “Neuropathology and Neuropharmacology of Monoaminergic Systems” was hosted by the University of Bordeaux, France on 8-10 October 2014. The conference, organized by Prof. De Deurwaerdùre, was supported by COST (European Cooperation in Science and Technology) and LABEX (LABEX Brain, University of Bordeaux). The program took the form of a three-day meeting, comprising a series of French and international invited talks and breakout sessions designed to identify key gaps in current knowledge and potential future research questions. The aims of this Conference were two-fold: 1. To identify the current state-of-the-art in the understanding of the pathological mechanisms that contribute to different neuropsychiatric disorders, and to what extent, monoamines a multi-target drugs and/or other interventions might prevent these changes. 2. To identify specific areas of research where information is sparse but which are likely to yield data that will impact on future strategies to treat neurodegenerative disorders.peer-reviewe

    The Noradrenergic System in Parkinson’s Disease

    Get PDF
    Nowadays it is well accepted that in Parkinson's disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacological-based treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.This study was supported by grants from the Basque Government (PIBA 2019-38, IT1345-19), UPV/EHU (PPGA19/15), and Spanish Government (SAF2016‐77758‐R [AEI/FEDER, UE]). EP-R has a fellowship from the Basque Country and SV-S from the UPV/EHU

    Monoaminergic mechanisms in epilepsy may offer innovative therapeutic opportunity for monoaminergic multi-target drugs

    Get PDF
    A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of “one-molecule-one-target,” have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.peer-reviewe

    Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease among the elderly. To understand pathogenesis and to test therapies, animal models that faithfully reproduce key pathological PD hallmarks are needed. As a prelude to developing a model of PD, we tested the tropism, efficacy, biodistribution, and transcriptional impact of canine adenovirus type 2 (CAV-2) vectors in the brain of Microcebus murinus, a nonhuman primate that naturally develops neurodegenerative lesions. We show that introducing helper-dependent (HD) CAV-2 vectors results in long-term, neuron-specific expression at the injection site and in afferent nuclei. Although HD CAV-2 vector injection induced a modest transcriptional response, no significant adaptive immune response was generated. We then generated and tested HD CAV-2 vectors expressing LRRK2 (leucine-rich repeat kinase 2) and LRRK2 carrying a G2019S mutation (LRRK2G2019S), which is linked to sporadic and familial autosomal dominant forms of PD. We show that HD-LRRK2G2019S expression induced parkinsonian-like motor symptoms and histological features in less than 4 months

    5-HT interaction with other neurotransmitters: an overview

    No full text
    Serotonin (5-HT) biological functions are complex and multifaceted. It controls almost all central nervous system (CNS) regions from cell bodies confined in the brainstem. This means that the 5-HT system is able to interact mutually with most neurochemical systems in the CNS. The knowledge of these interactions is fundamental to better understand the mechanisms of action of antidepressant, anxiolytic, antipsychotic, anti-convulsant, antiparkinsonian drugs leading to (i) correcting the side effects of these drugs, (ii) improving the efficacy of these drugs to enhance their beneficial response, and (iii) establishing new therapeutic strategies for all CNS diseases including those such as Alzheimer's disease, epilepsy, and drug addiction which are in need of new therapeutic approaches. The interaction of 5-HT with other neurochemical systems is specific to that given system, and it is the ambition of this collection, comprising two volumes to collect some authoritative reviews to highlight some of these important interactions. The first volume covers the interaction of 5-HT and its numerous receptors with the noradrenergic, GABAergic, endocannabinoid, and glial cell systems. The chapters encompass vast CNS territories and show the therapeutic relevance of targeting 5-HT/other neurotransmitter interaction for several neuropsychiatric diseases including addiction, mood disorders, aberrant food intake, epilepsy, and abnormal brain development

    Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry

    No full text
    Though a multi-facetted disorder, Parkinson’s disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson’s disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson’s disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson’s disease

    In vivo study of monoamine oxidases using multisite intracerebral microdialysis

    No full text
    The activity of monoamine oxidases (MAOs) in the brain is often associated with neurodegenerative diseases. The study of MAOs in vivo or ex vivo is generally performed using MAO inhibitors and rarely using substrates. We present a pharmacological approach using intracerebral microdialysis to study the activity of MAO in the striatum and the prefrontal cortex of rats. It consists of applying ascending concentrations of 3-methoxytyramine (3-MT) as a substrate via the probes and measuring the indirect product homovanillic acid generated by MAO activity. We present herein the methodologies comprising our in-house stereotaxic procedures in rats, the microdialysis perfusion system and the substrate application, and the neurochemical analysis of the samples

    Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases

    No full text
    The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression

    L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum.

    Get PDF
    International audienceL-dopa remains the mainstay treatment for Parkinson's disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa
    corecore