377 research outputs found

    Towards Contextual Action Recognition and Target Localization with Active Allocation of Attention

    Get PDF
    Exploratory gaze movements are fundamental for gathering the most relevant information regarding the partner during social interactions. We have designed and implemented a system for dynamic attention allocation which is able to actively control gaze movements during a visual action recognition task. During the observation of a partners reaching movement, the robot is able to contextually estimate the goal position of the partner hand and the location in space of the candidate targets, while moving its gaze around with the purpose of optimizing the gathering of information relevant for the task. Experimental results on a simulated environment show that active gaze control provides a relevant advantage with respect to typical passive observation, both in term of estimation precision and of time required for action recognition. © 2012 Springer-Verlag

    Model discrimination in gravitational wave spectra from dark phase transitions

    Get PDF
    In anticipation of upcoming gravitational wave experiments, we provide a comprehensive overview of the spectra predicted by phase transitions triggered by states from a large variety of dark sector models. Such spectra are functions of the quantum numbers and (self-) couplings of the scalar that triggers the dark phase transition. We classify dark sectors that give rise to a first order phase transition and perform a numerical scan over the thermal parameter space. We then characterize scenarios in which a measurement of a new source of gravitational waves could allow us to discriminate between models with differing particle content

    Three-phase mass transfer in pillared micro channels

    Get PDF
    no abstrac

    Three-phase mass transfer in pillared micro channels

    Get PDF
    no abstrac

    Closed-Loop Perching and Spatial Guidance Laws for Bio-Inspired Articulated Wing MAV

    Get PDF
    This paper presents the underlying theoretical developments and successful experimental demonstrations of perching of an aerial robot. The open-loop lateral-directional dynamics of the robot are inherently unstable because it lacks a vertical tail for agility, similar to birds. A unique feature of this robot is that it uses wing articulation for controlling the flight path angle as well as the heading. New guidance algorithms with guaranteed stability are obtained by rewriting the flight dynamic equations in the spatial domain rather than as functions of time, after which dynamic inversion is employed. It is shown that nonlinear dynamic inversion naturally leads to proportional-integral-derivative (PID) controllers, thereby providing an exact method for tuning the gains. The effectiveness of the proposed bio-inspired robot design and its novel closed-loop perching controller has been successfully demonstrated with perched landings on a human hand

    Effectiveness of e-learning in continuing medical education for occupational physicians

    Get PDF
    Background Within a clinical context e-learning is comparable to traditional approaches of continuing medical education (CME). However, the occupational health context differs and until now the effect of postgraduate e-learning among occupational physicians (OPs) has not been evaluated
    corecore