879 research outputs found
Thermal Operators in Ising Percolation
We discuss a new cluster representation for the internal energy and the
specific heat of the d-dimensional Ising model, obtained by studying the
percolation mapping of an Ising model with an arbitrary set of
antiferromagnetic links. Such a representation relates the thermal operators to
the topological properties of the Fortuin-Kasteleyn clusters of Ising
percolation and is a powerful tool to get new exact relations on the
topological structure of FK clusters of the Ising model defined on an arbitrary
graph.Comment: 17 pages, 2 figures. Improved version. Major changes in the text and
in the notations. A missing term added in the specific heat representatio
Glassy behavior of the site frustrated percolation model
The dynamical properties of the site frustrated percolation model are
investigated and compared with those of glass forming liquids. When the density
of the particles on the lattice becomes high enough, the dynamics of the model
becomes very slow, due to geometrical constraints, and rearrangement on large
scales is needed to allow relaxation. The autocorrelation functions, the
specific volume for different cooling rates, and the mean square displacement
are evaluated, and are found to exhibit glassy behavior.Comment: 8 pages, RevTeX, 11 fig
Dynamic heterogeneities in attractive colloids
We study the formation of a colloidal gel by means of Molecular Dynamics
simulations of a model for colloidal suspensions. A slowing down with gel-like
features is observed at low temperatures and low volume fractions, due to the
formation of persistent structures. We show that at low volume fraction the
dynamic susceptibility, which describes dynamic heterogeneities, exhibits a
large plateau, dominated by clusters of long living bonds. At higher volume
fraction, where the effect of the crowding of the particles starts to be
present, it crosses over towards a regime characterized by a peak. We introduce
a suitable mean cluster size of clusters of monomers connected by "persistent"
bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure
Off equilibrium response function in the one dimensional random field Ising model
A thorough numerical investigation of the slow dynamics in the d=1 random
field Ising model in the limit of an infinite ferromagnetic coupling is
presented. Crossovers from the preasymptotic pure regime to the asymptotic
Sinai regime are investigated for the average domain size, the autocorrelation
function and staggered magnetization. By switching on an additional small
random field at the time tw the linear off equilibrium response function is
obtained, which displays as well the crossover from the nontrivial behavior of
the d=1 pure Ising model to the asymptotic behavior where it vanishes
identically.Comment: 12 pages, 10 figure
Two channel model for optical conductivity of high mobility organic crystals
We show that the temperature dependence of conductivity of high mobility
organic crystals Pentacene and Rubrene can be quantitatively described in the
framework of the model where carriers are scattered by quenched local
impurities and interact with phonons by Su-Schrieffer-Hegger (SSH) coupling.
Within this model, we present approximation free results for mobility and
optical conductivity obtained by world line Monte Carlo, which we generalize to
the case of coupling both to phonons and impurities. We find fingerprints of
carrier dynamics in these compounds which differ from conventional metals and
show that the dynamics of carriers can be described as a superposition of a
Drude term representing diffusive mobile particles and a Lorentz term
associated with dynamics of localized charges.Comment: 6 pages, 5 figure
- …