41 research outputs found

    Research priorities for next-generation breeding of tropical forages in Brazil.

    Get PDF
    ABSTRACT: Pasture is the main food source for more than 200 million cattle heads in Brazil. Although Brazilian forage breeding programs have successfully released well-adapted, high-yielding cultivars over the years, the use of genomic tools in these programs is currently limited. These tools are required to tackle the main challenges for tropical forage breeding in Brazil. In this context, this notes lists the main research priorities raised at the workshop ?Breeding Forages in the Genomic Era?, which are necessary to accelerate the use of genomic tools for next-generation breeding of tropical forages and allow breeders to increase genetic gains. Additionally, an online discussion forum (hosted at http://www.cnpgl.embrapa.br/genfor) has been launched to strengthen collaborations among research groups. The research priorities and more synergistic collaborations will assist researchers and decision-makers in delivering a sustainable increase in production of animal products, especially beef and milk, which are required to feed a rising world population

    Research priorities for next-generation breeding of tropical forages in Brazil.

    Get PDF
    ABSTRACT: Pasture is the main food source for more than 200 million cattle heads in Brazil. Although Brazilian forage breeding programs have successfully released well-adapted, high-yielding cultivars over the years, the use of genomic tools in these programs is currently limited. These tools are required to tackle the main challenges for tropical forage breeding in Brazil. In this context, this notes lists the main research priorities raised at the workshop “Breeding Forages in the Genomic Era”, which are necessary to accelerate the use of genomic tools for next-generation breeding of tropical forages and allow breeders to increase genetic gains. Additionally, an online discussion forum (hosted at http://www.cnpgl.embrapa.br/genfor) has been launched to strengthen collaborations among research groups. The research priorities and more synergistic collaborations will assist researchers and decision-makers in delivering a sustainable increase in production of animal products, especially beef and milk, which are required to feed a rising world population

    Evidence for positive selection in the gene fruitless in Anastrepha fruit flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many genes involved in the sex determining cascade have indicated signals of positive selection and rapid evolution across different species. Even though <it>fruitless </it>is an important gene involved mostly in several aspects of male courtship behavior, the few studies so far have explained its high rates of evolution by relaxed selective constraints. This would indicate that a large portion of this gene has evolved neutrally, contrary to what has been observed for other genes in the sex cascade.</p> <p>Results</p> <p>Here we test whether the <it>fruitless </it>gene has evolved neutrally or under positive selection in species of <it>Anastrepha </it>(Tephritidae: Diptera) using two different approaches, a long-term evolutionary analysis and a populational genetic data analysis. The first analysis was performed by using sequences of three species of <it>Anastrepha </it>and sequences from several species of <it>Drosophila </it>using the ratio of nonsynonymous to synonymous rates of evolution in PAML, which revealed that the <it>fru </it>region here studied has evolved by positive selection. Using Bayes Empirical Bayes we estimated that 16 sites located in the connecting region of the <it>fruitless </it>gene were evolving under positive selection. We also investigated for signs of this positive selection using populational data from 50 specimens from three species of <it>Anastrepha </it>from different localities in Brazil. The use of standard tests of selection and a new test that compares patterns of differential survival between synonymous and nonsynonymous in evolutionary time also provide evidence of positive selection across species and of a selective sweep for one of the species investigated.</p> <p>Conclusions</p> <p>Our data indicate that the high diversification of <it>fru </it>connecting region in <it>Anastrepha </it>flies is due at least in part to positive selection, not merely as a consequence of relaxed selective constraint. These conclusions are based not only on the comparison of distantly related taxa that show long-term divergence time, but also on recently diverged lineages and suggest that episodes of adaptive evolution in <it>fru </it>may be related to sexual selection and/or conflict related to its involvement in male courtship behavior.</p
    corecore