535 research outputs found

    The Deelen infrasound array for recording sonic booms and events of CTBT interest

    Get PDF
    The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) has build up expertise in infrasound measurements by investigating low frequency events in order to distinguish between seismic and sonic events. KNMI operates, amongst others, a sixteen element microbarometer array with an aperture of 1.5 km, the Deelen Infrasound Array (DIA). Sonic booms and events of Comprehensive Test Ban Treaty (CTBT) interest are recorded within the frequency range of 100 seconds and 40 Hertz. Recently, KNMI and Microflown Technologies B.V. started a collaboration concerning infrasound measurements. This paper reports the use of a novel sensor. The so-called Microflown [1] is an acoustic sensor, sensitive for frequencies from 0Hz up to 1kHz. The Microflown is developed at the University of Twente and commercialised by Microflown Technologies B.V [3]

    A novel technique for measuring the reflection coefficient of sound absorbing materials

    Get PDF
    A new method to measure the acoustic behaviour of sound absorbing material in an impedance tube is presented. The method makes use of a novel particle velocity sensor, the microflown, and a microphone. The so-called p·u method is compared to three other methods of which the two microphone technique is well known. It is shown that the combination of a microphone and a microflown provides direct information on the acoustic impedance, the sound intensity and the sound energy density. The experimental results are compared to the results obtained with the conventional impedance tube measurements. To be able to repeat the measurements in a reliable way a well described test sample with a quarter-wave resonator is used. Furthermore it is shown that the viscothermal effects on the wave propagation are important, i.e. for the quarter-wave resonator and to a lesser extent for the impedance tube itself

    A numerical study of a method for measuring the effective in situ sound absorption coefficient

    Get PDF
    The accuracy of a method [Wijnant et al., “Development and applica- tion of a new method for the in-situ measurement of sound absorption”, ISMA 31, Leuven, Belgium (2010).], for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assump- tion, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields

    A Three Dimensional Microflown

    Get PDF
    An integrated three dimensional acoustic particle velocity sensor is realized. The integration of multiple sensors on a single silicon die leads to improvements in terms of better a better reproducible sensor and a very small sensor to sensor distance allowing accurate single point measurements. Initial measurements performed show that three dimensional noise source finding is possible with this sensor

    Measurement of absorption with a p-u sound intensity probe in an impedance tube

    Get PDF
    An alternative method of measuring the normal-incidence sound absorption of a sample of material in an impedance tube is examined. The method is based on measurement of the sound pressure and the normal component of the particle velocity using a "p-u" sound intensity probe. This technique is compared with the traditional, well-established "transfer function method" based on two pressure microphones. The results suggest that the new method can be as accurate as the established method, but whereas the influence of transducer mismatch on the transfer function method can be eliminated using a simple "sensor-switching technique," the method based on a p-u intensity probe relies on accurate calibration of the probe

    Comparison of Two Methods for Measurement of Horn Input Impedance

    Get PDF
    Two methods to measure the acoustic input impedance of a horn are compared. First method measures standing wave patterns in a tube which is loaded by the horn. The input impedance is calculated from the position of the first minimum in the standing wave pattern, and the ratio of maximum and minimum sound pressure level in the tube. Secondly we applied a direct method. A novel flow sensor, the microflown, is used together with a pressure microphone, which are mounted in the throat of the horn. Results from both measurements are compared with simulated models

    Taenia solium Cysticercosis, Irian Jaya, Indonesia

    Get PDF
    Centers for Disease Control and Prevention, Toni, Wandra ; Akira, Ito ; Hiroshi, Yamasaki ; Thomas, Suroso ; Sri S. Margono, Emerging Infectious Diseases, 9(7), 2003, 884-885. publishe
    • …
    corecore