75 research outputs found

    The pattern and Loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention.

    Get PDF
    There is enormous interest in designing training methods for reducing cognitive decline in healthy older adults. Because it is impaired with aging, multitasking has often been targeted and has been shown to be malleable with appropriate training. Investigating the effects of cognitive training on functional brain activation might provide critical indication regarding the mechanisms that underlie those positive effects, as well as provide models for selecting appropriate training methods. The few studies that have looked at brain correlates of cognitive training indicate a variable pattern and location of brain changes - a result that might relate to differences in training formats. The goal of this study was to measure the neural substrates as a function of whether divided attentional training programs induced the use of alternative processes or whether it relied on repeated practice. Forty-eight older adults were randomly allocated to one of three training programs. In the SINGLE REPEATED training, participants practiced an alphanumeric equation and a visual detection task, each under focused attention. In the DIVIDED FIXED training, participants practiced combining verification and detection by divided attention, with equal attention allocated to both tasks. In the DIVIDED VARIABLE training, participants completed the task by divided attention, but were taught to vary the attentional priority allocated to each task. Brain activation was measured with fMRI pre- and post-training while completing each task individually and the two tasks combined. The three training programs resulted in markedly different brain changes. Practice on individual tasks in the SINGLE REPEATED training resulted in reduced brain activation whereas DIVIDED VARIABLE training resulted in a larger recruitment of the right superior and middle frontal gyrus, a region that has been involved in multitasking. The type of training is a critical factor in determining the pattern of brain activation

    Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer

    Get PDF
    The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease

    The impact of attentional training on event-related potentials in older adults.

    No full text
    Attentional control declines in older adults and is paralleled by changes in event-related brain potentials (ERPs). The N200 is associated with attentional control, thus training-related improvements in attentional control should be paralleled by enhancements to the N200. Older participants were randomly assigned to 1 of 3 groups, which focused on training different levels of attentional control: (1) single-task training (single), where participants trained on 2 tasks in isolation; (2) fixed divided attention training (fixed), where participants trained on 2 tasks simultaneously; and (3) variable divided attention training (variable), where participants trained on 2 tasks simultaneously but were instructed to alternatively prioritize each of the 2 tasks. After training, the amplitude of the N200 wave increased in dual-task conditions for the variable group, and this enhancement was correlated with improved dual-task performance. Participants in the variable group also had the greatest improvement in the ability to modulate their allocation of attention in accordance with task instructions to the less salient and less complex of the 2 tasks. Training older adults to modulate their division of attention between tasks improves neural functions associated with attentional control of the trained tasks
    corecore