537 research outputs found

    The Stability of One-Step Schemes for First-Order Two-Point Boundary Value Problems

    Get PDF
    The stability of a finite difference scheme is related explicitly to the stability of the continuous problem being solved. At times, this gives materially better estimates for the stability constant than those obtained by the standard process of appealing to the stability of the numerical scheme for the associated initial value problem

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar

    Multivariate Anisotropic Interpolation on the Torus

    Full text link
    We investigate the error of periodic interpolation, when sampling a function on an arbitrary pattern on the torus. We generalize the periodic Strang-Fix conditions to an anisotropic setting and provide an upper bound for the error of interpolation. These conditions and the investigation of the error especially take different levels of smoothness along certain directions into account

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    Deep Learning for ECG Segmentation

    Full text link
    We propose an algorithm for electrocardiogram (ECG) segmentation using a UNet-like full-convolutional neural network. The algorithm receives an arbitrary sampling rate ECG signal as an input, and gives a list of onsets and offsets of P and T waves and QRS complexes as output. Our method of segmentation differs from others in speed, a small number of parameters and a good generalization: it is adaptive to different sampling rates and it is generalized to various types of ECG monitors. The proposed approach is superior to other state-of-the-art segmentation methods in terms of quality. In particular, F1-measures for detection of onsets and offsets of P and T waves and for QRS-complexes are at least 97.8%, 99.5%, and 99.9%, respectively.Comment: 10 pages, 7 figure

    Kernel Approximation on Manifolds II: The L∞L_{\infty}-norm of the L2L_2-projector

    Full text link
    This article addresses two topics of significant mathematical and practical interest in the theory of kernel approximation: the existence of local and stable bases and the L_p--boundedness of the least squares operator. The latter is an analogue of the classical problem in univariate spline theory, known there as the "de Boor conjecture". A corollary of this work is that for appropriate kernels the least squares projector provides universal near-best approximations for functions f\in L_p, 1\le p\le \infty.Comment: 25 pages; minor revision; new proof of Lemma 3.9; accepted for publication in SIAM J. on Math. Ana

    Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    Full text link
    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F\mathcal{F}-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F\mathcal{F}-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the F\mathcal{F}-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F\mathcal{F}-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.Comment: REVTeX, 20 pages, 8 figure

    A goodness-of-fit test for the functional linear model with scalar response

    Full text link
    In this work, a goodness-of-fit test for the null hypothesis of a functional linear model with scalar response is proposed. The test is based on a generalization to the functional framework of a previous one, designed for the goodness-of-fit of regression models with multivariate covariates using random projections. The test statistic is easy to compute using geometrical and matrix arguments, and simple to calibrate in its distribution by a wild bootstrap on the residuals. The finite sample properties of the test are illustrated by a simulation study for several types of basis and under different alternatives. Finally, the test is applied to two datasets for checking the assumption of the functional linear model and a graphical tool is introduced. Supplementary materials are available online.Comment: Paper: 17 pages, 2 figures, 3 tables. Supplementary material: 8 pages, 6 figures, 10 table

    Counterexample-Guided Polynomial Loop Invariant Generation by Lagrange Interpolation

    Full text link
    We apply multivariate Lagrange interpolation to synthesize polynomial quantitative loop invariants for probabilistic programs. We reduce the computation of an quantitative loop invariant to solving constraints over program variables and unknown coefficients. Lagrange interpolation allows us to find constraints with less unknown coefficients. Counterexample-guided refinement furthermore generates linear constraints that pinpoint the desired quantitative invariants. We evaluate our technique by several case studies with polynomial quantitative loop invariants in the experiments

    Numerical shadows: measures and densities on the numerical range

    Get PDF
    For any operator MM acting on an NN-dimensional Hilbert space HNH_N we introduce its numerical shadow, which is a probability measure on the complex plane supported by the numerical range of MM. The shadow of MM at point zz is defined as the probability that the inner product (Mu,u)(Mu,u) is equal to zz, where uu stands for a random complex vector from HNH_N, satisfying ∣∣u∣∣=1||u||=1. In the case of N=2 the numerical shadow of a non-normal operator can be interpreted as a shadow of a hollow sphere projected on a plane. A similar interpretation is provided also for higher dimensions. For a hermitian MM its numerical shadow forms a probability distribution on the real axis which is shown to be a one dimensional BB-spline. In the case of a normal MM the numerical shadow corresponds to a shadow of a transparent solid simplex in RN−1R^{N-1} onto the complex plane. Numerical shadow is found explicitly for Jordan matrices JNJ_N, direct sums of matrices and in all cases where the shadow is rotation invariant. Results concerning the moments of shadow measures play an important role. A general technique to study numerical shadow via the Cartesian decomposition is described, and a link of the numerical shadow of an operator to its higher-rank numerical range is emphasized.Comment: 37 pages, 8 figure
    • …
    corecore