13,489 research outputs found

    Cancellation of quantum mechanical higher loop contributions to the gravitational chiral anomaly

    Full text link
    We give an explicit demonstration, using the rigorous Feynman rules developed in~\0^{1}, that the regularized trace \tr \gamma_5 e^{-\beta \Dslash^2} for the gravitational chiral anomaly expressed as an appropriate quantum mechanical path integral is β\beta-independent up to two-loop level. Identities and diagrammatic notations are developed to facilitate rapid evaluation of graphs given by these rules.Comment: 10 pages, LaTeX and psfig (many figures

    High-velocity gas towards the LMC resides in the Milky Way halo

    Full text link
    To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d=9.2 kpc distance. We study the velocity-component structure of low and intermediate metal ions in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard HST, and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer spectrum of the nearby LMC star Sk-69 59 and with HI 21cm data from the Leiden-Argentina-Bonn (LAB) survey. Metal absorption towards RXJ0439.8-6809 is unambiguously detected in three different velocity components near v_LSR=0,+60, and +150 km/s. The presence of absorption proves that all three gas components are situated in front of the star, thus being located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v_LSR=+150 km/s we derive an oxygen abundance of [O/H]=-0.63 (~0.2 solar) from the neighbouring Sk-69 59 sightline, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Our study shows that the HVC towards the LMC represents a Milky Way halo cloud that traces low-column density gas with relatively low metallicity. It rules out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.Comment: 4 pages, 3 figures; submitted to A&A Letter

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    ORFEUS II echelle spectra: Absorption by H_2 in the LMC

    Get PDF
    We present the first detection of molecular hydrogen (H_2) UV absorption profiles on the line of sight to the LMC. The star LH 10:3120 in the LMC was measured with the ORFEUS telescope and the Tuebingen echelle spectrograph during the space shuttle mission of Nov./Dec. 1996. 16 absorption lines from the Lyman band are used to derive the column densities of H_2 for the lowest 5 rotational states in the LMC gas. For these states we find a total column density of N(H_2)=6.6 x 10^18$ cm^-2 on this individual line of sight. We obtain equivalent excitation temperatures of T < 50 K for the rotational ground state and T = 470 K for 0 < J < 6 by fitting the population densities of the rotational states to theoretical Boltzmann distributions. We conclude that UV pumping dominates the population of the higher rotational levels, as known from the H_2 gas in the Milky Way. (Research supported in part by the DARA)Comment: Astronomy & Astrophysics, Letter, in pres

    Differential chemical abundance analysis of a 47 Tuc AGB star with respect to Arcturus

    Full text link
    This study resolves a discrepancy in the abundance of Zr in the 47 Tucanae asymptotic giant branch star Lee 2525. This star was observed using the echelle spectrograph on the 2.3 m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasises the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun (Koch & McWilliam 2008). Systematic errors in the analysis process are then minimised due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein (1992) values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars (Busso et al. 2001). This is contrary to the results of Brown & Wallerstein (1992) where Zr was under-abundant ([Zr/Fe] = +0.51 dex) and Y was over-abundant ([Y/Fe] = +0.50 dex) with respect to Fe.Comment: 11 pages, 5 figures Accepted for publication in MNRA

    Chandra Detection of X-ray Absorption Associated with a Damped Lyman Alpha System

    Full text link
    We have observed three quasars, PKS 1127-145, Q 1331+171 and Q0054+144, with the ACIS-S aboard the Chandra X-ray Observatory, in order to measure soft X-ray absorption associated with intervening 21-cm and damped Lyα\alpha absorbers. For PKS 1127-145, we detect absorption which, if associated with an intervening z_{abs}=0.312 absorber, implies a metallicity of 23% solar. If the absorption is not at z_{abs}=0.312, then the metallicity is still constrained to be less than 23% solar. The advantage of the X-ray measurement is that the derived metallicity is insensitive to ionization, inclusion of an atom in a molecule, or depletion onto grains. The X-ray absorption is mostly due to oxygen, and is consistent with the oxygen abundance of 30% solar derived from optical nebular emission lines in a foreground galaxy at the redshift of the absorber. For Q1331+171 and Q 0054+144, only upper limits were obtained, although the exposure times were intentionally short, since for these two objects we were interested primarily in measuring flux levels to plan for future observations. The imaging results are presented in a companion paper.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Can filamentary accretion explain the orbital poles of the Milky Way satellites?

    Full text link
    Several scenarios have been suggested to explain the phase-space distribution of the Milky Way (MW) satellite galaxies in a disc of satellites (DoS). To quantitatively compare these different possibilities, a new method analysing angular momentum directions in modelled data is presented. It determines how likely it is to find sets of angular momenta as concentrated and as close to a polar orientation as is observed for the MW satellite orbital poles. The method can be easily applied to orbital pole data from different models. The observed distribution of satellite orbital poles is compared to published angular momentum directions of subhalos derived from six cosmological state-of-the-art simulations in the Aquarius project. This tests the possibility that filamentary accretion might be able to naturally explain the satellite orbits within the DoS. For the most likely alignment of main halo and MW disc spin, the probability to reproduce the MW satellite orbital pole properties turns out to be less than 0.5 per cent in Aquarius models. Even an isotropic distribution of angular momenta has a higher likelihood to produce the observed distribution. The two Via Lactea cosmological simulations give results similar to the Aquarius simulations. Comparing instead with numerical models of galaxy-interactions gives a probability of up to 90 per cent for some models to draw the observed distribution of orbital poles from the angular momenta of tidal debris. This indicates that the formation as tidal dwarf galaxies in a single encounter is a viable, if not the only, process to explain the phase-space distribution of the MW satellite galaxies.Comment: 14 pages, 4 figures, 3 tables. Accepted for publication in MNRA
    • …
    corecore