12,691 research outputs found

    Exotic branes and non-geometric backgrounds

    Get PDF
    When string/M-theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher dimensional origin cannot be explained by the standard string/M-theory branes. We argue that exotic branes can be understood in higher dimensions as non-geometric backgrounds or U-folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries.Comment: 4 pages. v2: journal version. The discussion on "double puff-up" revise

    The impact of a 126 GeV Higgs on the neutralino mass

    Get PDF
    We highlight the differences of the dark matter sector between the constrained minimal supersymmetric SM (CMSSM) and the next-to-minimal supersymmetric SM (NMSSM) including the 126 GeV Higgs boson using GUT scale parameters. In the dark matter sector the two models are quite orthogonal: in the CMSSM the WIMP is largely a bino and requires large masses from the LHC constraints. In the NMSSM the WIMP has a large singlino component and is therefore independent of the LHC SUSY mass limits. The light NMSSM neutralino mass range is of interest for the hints concerning light WIMPs in the Fermi data. Such low mass WIMPs cannot be explained in the CMSSM. Furthermore, prospects for discovery of XENON1T and LHC at 14 TeV are given.Comment: 18 pages, 5 figures, this version is accepted by PLB after modifications including additional figure

    Can we discover a light singlet-like NMSSM Higgs boson at the LHC?

    Get PDF
    In the next-to minimal supersymmetric standard model (NMSSM) one additional singlet-like Higgs boson with small couplings to standard model (SM) particles is introduced. Although the mass can be well below the discovered 125 GeV Higgs boson mass its small couplings may make a discovery at the LHC difficult. We use a novel scanning technique to efficiently scan the whole parameter space and determine the range of cross sections and branching ratios for the light singlet-like Higgs boson below 125 GeV. This allows to determine the perspectives for the future discovery potential at the LHC. Specific LHC benchmark points are selected representing the salient NMSSM features.Comment: 22 pages, 5 figures, this version is accepted by PLB after minor modification

    Higgs Branching Ratios in Constrained Minimal and Next-to-Minimal Supersymmetry Scenarios Surveyed

    Get PDF
    In the CMSSM the heaviest scalar and pseudo-scalar Higgs bosons decay largely into b-quarks and tau-leptons because of the large tanβ\tan\beta values favored by the relic density. In the NMSSM the number of possible decay modes is much richer. In addition to the CMSSM-like scenarios, the decay of the heavy Higgs bosons is preferentially into top quark pairs (if kinematically allowed), lighter Higgs bosons or neutralinos, leading to invisible decays. We provide a scan over the NMSSM parameter space to project the 6D parameter space of the Higgs sector on the 3D space of the Higgs masses to determine the range of branching ratios as function of the Higgs boson mass for all Higgs bosons. Specific LHC benchmark points are proposed, which represent the salient NMSSM features.Comment: 24 pages, 3 figures, this version is accepted by PLB after minor modification

    Perspectives of direct Detection of supersymmetric Dark Matter in the NMSSM

    Get PDF
    In the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM) the lightest supersymmetric particle (LSP) is a candidate for the dark matter (DM) in the universe. It is a mixture from the various gauginos and Higgsinos and can be bino-, Higgsino- or singlino-dominated. Singlino-dominated LSPs can have very low cross sections below the neutrino background from coherent neutrino scattering which is limiting the sensitivity of future direct DM search experiments. However, previous studies suggested that the combination of both, the spin-dependent (SD) and spin-independent (SI) searches are sensitive in complementary regions of parameter space, so considering both searches will allow to explore practically the whole parameter space of the NMSSM. In this letter, the different scenarios are investigated with a new scanning technique, which reveals that significant regions of the NMSSM parameter space cannot be explored, even if one considers both, SI and SD, searches.Comment: 22 pages, 3 figures, this version is accepted by PLB after minor modification
    corecore