18,203 research outputs found

    Mixed continuous-discrete variable optimization of composite panels using surrogate models

    Get PDF

    On a novel approach for optimizing composite materials panel using surrogate models

    Get PDF
    This paper describes an optimization procedure to design thermoplastic composite panels under axial compressive load conditions. Minimum weight is the goal. The panel design is subject to buckling constraints. The presence of the bending-twisting coupling and of particular boundary conditions does not allow an analytical solution for the critical buckling load. Surrogate models are used to approximate the buckling response of the plate in a fast and reliable way. Therefore, two surrogate models are compared to study their effectiveness in composite optimization. The first one is a linear approximation based on the buckling constitutive equation. The second consists in the application of the Kriging surrogate. Constraints given from practical blending rules are also introduced in the optimization. Discrete values of ply thicknesses is a requirement. An ad-hoc discrete optimization strategy is developed, which enables to handle discrete variables

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    ORFEUS II echelle spectra: Absorption by H_2 in the LMC

    Get PDF
    We present the first detection of molecular hydrogen (H_2) UV absorption profiles on the line of sight to the LMC. The star LH 10:3120 in the LMC was measured with the ORFEUS telescope and the Tuebingen echelle spectrograph during the space shuttle mission of Nov./Dec. 1996. 16 absorption lines from the Lyman band are used to derive the column densities of H_2 for the lowest 5 rotational states in the LMC gas. For these states we find a total column density of N(H_2)=6.6 x 10^18$ cm^-2 on this individual line of sight. We obtain equivalent excitation temperatures of T < 50 K for the rotational ground state and T = 470 K for 0 < J < 6 by fitting the population densities of the rotational states to theoretical Boltzmann distributions. We conclude that UV pumping dominates the population of the higher rotational levels, as known from the H_2 gas in the Milky Way. (Research supported in part by the DARA)Comment: Astronomy & Astrophysics, Letter, in pres

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    Nonperturbative Tests of Three-Dimensional Dualities

    Get PDF
    We test several conjectural dualities between strongly coupled superconformal field theories in three dimensions by computing their exact partition functions on a three-sphere as a function of Fayet-Iliopoulos and mass parameters. The calculation is carried out using localization of the path integral and the matrix model previously derived for superconformal N = 2 gauge theories. We verify that the partition functions of quiver theories related by mirror symmetry agree provided the mass parameters and the Fayet-Iliopoulos parameters are exchanged, as predicted. We carry out a similar calculation for the mirror of N = 8 super-Yang-Mills theory and show that its partition function agrees with that of the ABJM theory at unit Chern-Simons level. This provides a nonperturbative test of the conjectural equivalence of the two theories in the conformal limit

    Diamond thin Film Detectors for Beam Monitoring Devices

    Full text link
    Diamonds offer radiation hard sensors, which can be used directly in primary beams. Here we report on the use of a polycrystalline CVD diamond strip sensor as beam monitor of heavy ion beams with up to 2.10^9 lead ions per bunch. The strips allow for a determination of the transverse beam profile to a fraction of the pitch of the strips, while the timing information yields the longitudinal bunch length with a resolution of the order of a few mm.Comment: 6 pages, 7 figures, to appear in the Proceedings of the Hasselt Diamond Workshop (Hasselt, Belgium, Feb. 2006), v4: accidentally submitted figure, appearing at end, remove

    Parallel single cell analysis on an integrated microfluidic platform for cell trapping, lysis and analysis

    Get PDF
    We report here a novel and easily scalable microfluidic platform for the parallel analysis of hundreds of individual cells, with controlled single cell trapping, followed by their lysis and subsequent retrieval of the cellular content for on-chip analysis. The device consists of a main channel and an array of shallow side channels connected to the main channel via trapping structures. Cells are individually captured in dam structures by application of a negative pressure from an outlet reservoir, lyzed on site and the cellular content controllably extracted and transported in the individual side channels for on-chip analysis.\u

    Optical excitation and external photoluminescence quantum efficiency of Eu3+ in GaN

    Get PDF
    We investigate photoluminescence of Eu-related emission in a GaN host consisting of thin layers grown by organometallic vapor-phase epitaxy. By comparing it with a reference sample of Eu-doped Y2O3, we find that the fraction of Eu3+ ions that can emit light upon optical excitation is of the order of 1%. We also measure the quantum yield of the Eu-related photoluminescence and find this to reach (similar to 10%) and (similar to 3%) under continuous wave and pulsed excitation, respectively.Stichting voor de Technologische Wetenschappen (STW); Japan Society for the Promotion of Science [19GS1209, 24226009]; Ministry of Education, Culture, Sports, Science and Technology of Japaninfo:eu-repo/semantics/publishedVersio
    corecore