526 research outputs found

    Current evidence for treatment with nusinersen for spinal muscular atrophy : a systematic review

    Get PDF
    Recent discovery of nusinersen, an antisense oligonucleotide drug, has provided encouragement for improving treatment of spinal muscular atrophy. No therapeutic options currently exist for this autosomal recessive motor neuron disorder. Nusinersen is developed for intrathecal use and binds to a specific sequence within the survival motor neuron 2 pre-messenger RNA, modifying the splicing process to promote expression of full-length survival motor neuron protein. We performed a MEDLINE and CENTRAL search to investigate the current evidence for treatment with nusinersen in patients with spinal muscular atrophy. Four papers were withheld, including two phase-3 randomized controlled trials, one phase-2 open-label clinical trial and one phase-1 open-label clinical trial. Outcome measures concerned improvement in motor function and milestones, as well as event-free survival and survival. Results of these trials are hopeful with significant and clinically meaningful improvement due to treatment with intrathecal nusinersen in patients with early- and later-onset spinal muscular atrophy, although this does not restore age-appropriate function. Intrathecal nusinersen has acceptable safety and tolerability. Further trials regarding long-term effects and safety aspects as well as trials including broader spinal muscular atrophy and age categories are required and ongoing

    Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed

    The myokine GDF-15 is a potential biomarker for myositis and associates with the protein aggregates of sporadic inclusion body myositis.

    Get PDF
    Background: The cytokine growth differentiation factor-15 (GDF-15) has been associated with inflammatory and mitochondrial disease, warranting exploration of its expression in myositis patients. Methods: GDF-15 protein levels are evaluated in 35 idiopathic inflammatory myopathy (IIM) serum samples using enzyme-linked immunosorbent assays, comparing with levels in samples from healthy individuals and from patients with genetically confirmed hereditary muscular dystrophies and mitochondrial disorders. Muscle tissue expression of GDF-15 protein is evaluated using immunofluorescent staining and Western blotting. Results: GDF-15 protein levels are significantly higher in IIM sera (625 +/- 358 pg/ml) than in that of healthy controls (326 +/- 204 pg/ml, p = 0.01). Western blotting confirms increased GDF-15 protein levels in IIM muscle. In skeletal muscle tissue of IIM patients, GDF-15 localizes mostly to small regenerating or denervated muscle fibres. In patients diagnosed with sporadic inclusion body myositis, GDF-15 co-localizes with the characteristic protein aggregates within affected muscle fibres. Conclusions: We describe for the first time that GDF-15 is a myokine upregulated in myositis and present the cytokine as a potential diagnostic serum biomarker

    Single-centre experience on transthyretin familial amyloid polyneuropathy : case series and literature review

    Get PDF
    Familial amyloid polyneuropathy (FAP) is a most often length-dependent axonal neuropathy, often part of a multisystem disorder also affecting other organs, such as cardiac, gastrointestinal, genitourinary, renal, meningeal and eye tissue. It is most frequently the result of a mutation in the TTR gene, most commonly a p.Val50Met mutation. TTR-FAP is a rare autosomal dominant heritable disabling, heterogeneous disease in which early diagnosis is of pivotal importance when attempting treatment. This paper discusses the course of four Belgian FAP patients with different TTR mutations (p.Val48Met; p.Val52Ala; p.Ala59Val; p.Val50Met). We also review the diagnosis and differential diagnosis of TTR-FAP, diagnostic studies, follow-up, its current treatment and those in development, prognosis and the importance of genetic counseling. At first, TTR-FAP is often misdiagnosed as a chronic inflammatory demyelinating polyneuropathy or chronic idiopathic axonal polyneuropathy. Genetic testing is obligatory to confirm the diagnosis of TTR-FAP, except in familial cases. Biopsy samples are an asset in diagnosing TTR-FAP but can be falsely negative. At the moment, tafamidis meglumine is considered as first-line treatment in stage I neurological disease. Patients eligible for liver transplantation should be carefully selected when first-line therapy fails

    Description of a novel mechanism possibly explaining the antiproliferative properties of glucocorticoids in Duchenne muscular dystrophy fibroblasts based on glucocorticoid receptor GR and NFAT5

    Get PDF
    Glucocorticoids are drugs of choice in Duchenne muscular dystrophy (DMD), prolonging patients’ ambulation. Their mode of action at the protein level is not completely understood. In DMD, muscle tissue is replaced by fibrotic tissue produced by fibroblasts, reducing mobility. Nuclear factor of activated T-cells 5 (NFAT5) is involved in fibroblast proliferation. By treating one DMD fibroblast cell culture and one of unaffected skeletal muscle fibroblasts with methylprednisolone (MP) or hydrocortisone (HC) for 24 h or 12 d, the antiproliferative properties of glucocorticoids could be unraveled. NFAT5 localization and expression was explored by immunocytochemistry (ICC), Western blotting (WB) and RT-qPCR. NFAT5 and glucocorticoid receptor (GR) colocalization was measured by ImageJ. GR siRNA was used, evaluating GR’s influence on NFAT5 expression during MP and HC treatment. Cell proliferation was monitored by IncuCyte ZOOM. In DMD fibroblasts, treatment with MP for 24 h induced dots (ICC) positive for NFAT5 and colocalizing with GR. After 12 d of MP or HC in DMD fibroblasts, NFAT5 expression was decreased (RT-qPCR and WB) and growth arrest was observed (Incucyte ZOOM), whereas NFAT5 expression and cell growth remained unchanged in unaffected skeletal muscle fibroblasts. This study may help understand the antiproliferative properties of glucocorticoids in DMD fibroblasts

    Abnormal NFAT5 physiology in Duchenne muscular dystrophy fibroblasts as a putative explanation for the permanent fibrosis formation in Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is characterized by chronic inflammation and fibrotic tissue production by fibroblasts. The promyogenic factor nuclear factor of activated T-cells 5 (NFAT5) is virtually present in all cells, responding to hyperosmolar or pro-inflammatory stress. In embryogenic fibroblasts, absence of NFAT5 results in cell cycle arrest. Here, unaffected skeletal muscle fibroblasts from one healthy donor showed NFAT5 nuclear translocation upon hyperosmolar stress and normal cell viability. Absence of NFAT5 translocation under pro-inflammatory conditions resulted in decreased cell growth (Incucyte ZOOM). In DMD skeletal muscle fibroblasts from one DMD patient, NFAT5 was merely located in the nucleus. Exposure to hyperosmolar conditions or pro-inflammatory cytokines IFN-γ, IL-1β and TNF-α had no influence on NFAT5 physiology (immunofluorescence, western blotting, RT-qPCR). Hyperosmolarity resulted in decreased cell viability and pro-inflammatory stress in unaltered cell growth. These findings suggest that NFAT5 is vital to DMD fibroblast survival. Exposure to pro-inflammatory or hyperosmolar stress in DMD fibroblasts results in an unexpected NFAT5 response, where fibroblasts are not triggered by inflammatory cytokines and do not withstand hyperosmolarity. Chronic inflammation could be viewed as a non-restrictive factor in the formation of fibrosis in DMD. Abnormal NFAT5 physiology could provide a molecular explanation for permanent fibrotic matrix production by DMD fibroblasts

    Anti-inflammatory and general glucocorticoid physiology in skeletal muscles affected by Duchenne muscular dystrophy : exploration of steroid-sparing agents

    Get PDF
    In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients
    corecore