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Abstract: Glucocorticoids are drugs of choice in Duchenne muscular dystrophy (DMD), prolonging
patients’ ambulation. Their mode of action at the protein level is not completely understood. In DMD,
muscle tissue is replaced by fibrotic tissue produced by fibroblasts, reducing mobility. Nuclear
factor of activated T-cells 5 (NFAT5) is involved in fibroblast proliferation. By treating one DMD
fibroblast cell culture and one of unaffected skeletal muscle fibroblasts with methylprednisolone (MP)
or hydrocortisone (HC) for 24 h or 12 d, the antiproliferative properties of glucocorticoids could be
unraveled. NFAT5 localization and expression was explored by immunocytochemistry (ICC), Western
blotting (WB) and RT-qPCR. NFAT5 and glucocorticoid receptor (GR) colocalization was measured
by ImageJ. GR siRNA was used, evaluating GR’s influence on NFAT5 expression during MP and
HC treatment. Cell proliferation was monitored by IncuCyte ZOOM. In DMD fibroblasts, treatment
with MP for 24 h induced dots (ICC) positive for NFAT5 and colocalizing with GR. After 12 d of MP
or HC in DMD fibroblasts, NFAT5 expression was decreased (RT-qPCR and WB) and growth arrest
was observed (Incucyte ZOOM), whereas NFAT5 expression and cell growth remained unchanged
in unaffected skeletal muscle fibroblasts. This study may help understand the antiproliferative
properties of glucocorticoids in DMD fibroblasts.

Keywords: Duchenne muscular dystrophy fibroblasts; methylprednisolone; hydrocortisone;
reduction in proliferation; glucocorticoid receptor; NFAT5

1. Introduction

The major mode of action of glucocorticoids (GCs) was described in 1994 by Ray and Prefontaine [1]:
the glucocorticoid receptor GR binds to the master regulator of inflammation nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB). GCs induce reduced cell proliferation by cell
cycle arrest in the G1-S phase [2,3]. Cortisol is the natural GC produced in the body in the cortex of
the adrenal glands, during the acute stress response [4,5]. Many synthetic GCs are used in clinics
such as beclomethasone, betamethasone, cortisone, dexamethasone, fluticasone, hydrocortisone (HC),
methylprednisolone (MP), prednisolone and triamcinolone. MP is produced as methylprednisolone
sodium succinate (MPSS) for better dissolution in plasma. However, after hydrolysis in the liver, only a
fraction of MP remains available for therapeutic action. Besides, 75% of intravenous (IV) MP binds in
plasma to albumin and corticoid binding globulin (CBG), also known as transcortin. This results in a
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nonlinear relationship between free and bound MP and an impact on MP bioavailability [6]. Several
studies have been performed with different IV doses and report superimposable concentration curves
for total MP in plasma following different IV doses [7]. A range of 0.1–8 µg/mL total MP in plasma at
time point +0.5–18 h after IV or IM MP injection is found across the studies, independently of the used
dose [7–9]. Free MP concentration in plasma varies in a range of 0.001–1 µg/mL plasma. Cell culture
media are often supplemented with bovine serum naturally containing albumin and transcortin.
MP hydrolysis has also been described in cell culture media: 10–43% of the drug is hydrolyzed in
2–4 days [10,11]. Hydrocortisone (HC) is produced as hydrocortisone sodium succinate (HCSS) and is
very similar to endogenous cortisol. Up to 78% is bound in plasma [6]. Ranges from 0.39 to 1.21 µg/mL
total cortisol in plasma and 0.05–0.39 µg/mL of free cortisol in plasma have been measured from time
point + 0.5–5 h after IV administration [12].

Corticoids are also drugs of choice in Duchenne muscular dystrophy (DMD) [13]. Mutations in
the dystrophin gene are the genetic cause of the inherited muscle disease DMD [14,15], characterized
by chronic inflammation and hampered muscle regeneration [16]. The major debilitating factor in
DMD is the formation of fibrotic scar tissue [17], which is an excess of extracellular matrix formation
(ECM), especially collagen. Two major components induce fibrosis: chronic inflammation and chronic
proliferation of fibroblasts [18].

In the first stage of muscle repair, fibroblasts provide essential temporary scaffolding elements to
new muscle fibers and neuromuscular junctions such as laminin, proteoglycans, fibronectin, elastine
and collagen types I and III [18]. This scaffold may become a permanent and impairing secondary
tissue when inflammation becomes persistent after dysregulation in the ratio of the macrophages
M1/macrophages M2 [19]. Mouse embryonic fibroblasts lose their proliferative capacity when the
nuclear factor of activated T-cells 5 (NFAT5) is inhibited [20,21]. In a previous study, abnormal NFAT5
physiology was found in DMD fibroblasts from one patient. Both DMD and unaffected fibroblasts
reached confluency around 15 days. Unaffected skeletal muscle fibroblasts showed a growth factor
of 12–15 compared to control levels, with confluency around 80%. NFAT5 was merely located in
the nucleus and did not respond to proinflammatory cytokines. DMD fibroblast growth was not
hampered by this proinflammatory environment. This observation could explain permanent fibrotic
matrix production in DMD [22]. NFAT5 is known as a member of the Rel family of transcription
factors and harbors similar elements of NF-κB, which is inhibited by GCs by trapping it in cytoplasmic
complexes [23,24].

In this study, one DMD (male, 11 years old) and one cell culture from unaffected skeletal muscle
fibroblasts (male, 17 years old) used in a previous study [22] were treated with HC or MP, expecting
an influence of the GCs treatment on NFAT5 localization and expression in DMD fibroblasts and a
possible change in fibroblast proliferation over time. With GCs trapping NF-κB in the cytoplasm, the
interaction between NFAT5 and GR was investigated.

2. Results

2.1. Hydrocortisone and Methylprednisolone only Decrease DMD Fibroblasts Growth

Both DMD fibroblasts (DMDFibro) and unaffected fibroblasts (UFibro) remained viable during
the entire 12 d treatment with HC or MP ranging from 80 nM (0.025 ng/mL) to 80 mM (25 µg/mL).
No statistical difference could be shown in DMDFibro viability despite differences visible in cell
morphology under the phase contrast microscope after 12 days of treatment (Figures 1A and 2).
DMDFibro showed a statistically significant decrease in cell confluency when treated with 0.08 mM
HC, 8 mM HC, 80 mM HC or 8 mM MP (p < 0.05). Treatment with 80 mM MP for 12 d led to a more
significant decrease (p < 0.01). In UFibro, HC and MP were not able to reduce cell confluence over 12 d
(Figure 1B,C).

As described above, free HC concentrations in plasma are 0.05–0.39 µg/mL and free MP
concentrations are 0.001–1 µg/mL. Up to 80% of glucocorticoids bind to albumin and transcortin in
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plasma. With our cells remaining viable throughout the 12 d experiment, the following concentrations
were chosen for all further experiments to stay as close as possible to in vivo parameters: 8 mM
(=2.5 µg/mL) HC and 8 mM (=2.5 µg/mL) MP. Indeed, 20% of 2.5 µg/mL will be unbound in DMEM,
yielding 0.5 µg/mL HC and 0.5 µg/mL MP that can interact with the cells. These concentrations are
very close to the concentrations observed in vivo as described above.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 16 

 

 

Figure 1. Cell viability and relative cell confluence in Duchenne muscular dystrophy (DMD) and 
unaffected fibroblasts treated for 12 d with hydrocortisone (HC) or methylprednisolone (MP). Both 
in DMDFibro and UFibro, all cells keep their viability, translated in relative light units (RLU at 12 d) 
(A). Only DMDFibro shows decreased relative cell confluence as measured by Incucyte ZOOM (B) 
after treatment with HC (right panel in (B)) and MP (left panel in (B)). After statistical analysis of 
relative cell confluency in DMDFibro and UFibro treated for 12 d with HC or MP (C), significance 
was observed in DMDFibro after HC or MP treatment (left histogram in (C)); *= p < 0.05 and **= p < 
0.01; n = 3). 

Figure 1. Cell viability and relative cell confluence in Duchenne muscular dystrophy (DMD) and
unaffected fibroblasts treated for 12 d with hydrocortisone (HC) or methylprednisolone (MP). Both in
DMDFibro and UFibro, all cells keep their viability, translated in relative light units (RLU at 12 d) (A).
Only DMDFibro shows decreased relative cell confluence as measured by Incucyte ZOOM (B) after
treatment with HC (right panel in (B)) and MP (left panel in (B)). After statistical analysis of relative cell
confluency in DMDFibro and UFibro treated for 12 d with HC or MP (C), significance was observed in
DMDFibro after HC or MP treatment (left histogram in (C)); * = p < 0.05 and ** = p < 0.01; n = 3).

NFAT5 is an important protein in embryonic fibroblast growth. NFAT5 expression was studied by
RT-qPCR in DMDFibro. A significant downregulation in NFAT5 was observed after 12 d in DMDFibro
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with 8 mM MP (Figure 3A). NFAT5 protein was measured semiquantitatively by Western blotting (WB)
in DMDFibro and UFibro. After 24 h of 8 mM HC or 8 mM MP treatment in DMDFibro, a significant
decrease in NFAT5 protein was observed (p < 0.01 for HC and p < 0.001 for MP), which remained
decreased at day 12 in both conditions (p < 0.05). A significant decrease was also observed in UFibro
treated for 24 h with 8 mM MP (p < 0.001). However, this decrease was not visible at day 12 in both
treatment conditions (Figure 3B). GR protein expression was significantly decreased in DMDFibro
treated for 12 d with 8 mM HC (p < 0.05) or 8 mM MP (p < 0.01; Figure 3B).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 16 
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Figure 2. Cell morphology in DMD and unaffected fibroblasts treated for 12 d with hydrocortisone (HC) 
or methylprednisolone (MP). In DMDFibro, cells show detachment (black arrows) and shrinkage after 
treatment with 8 mM HC and 8 mM MP for 12 days. At day 12, UFibro show 80% cell confluency. 
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Figure 2. Cell morphology in DMD and unaffected fibroblasts treated for 12 d with hydrocortisone
(HC) or methylprednisolone (MP). In DMDFibro, cells show detachment (black arrows) and shrinkage
after treatment with 8 mM HC and 8 mM MP for 12 days. At day 12, UFibro show 80% cell confluency.

2.2. Insight into the Effect of Hydrocortisone and Methylprednisolone on DMD Fibroblast Growth through
NFAT5-GR Interaction

Visualizing NFAT5 and GR at time point + 24 h in DMDFibro and UFibro treated with 8 mM
HC or 8 mM MP was performed by confocal microscopy (CM). NFAT5 goat antibody was used [25].
All specificity tests were applied and valid (Supplementary Figures S1–S5).

In DMDFibro, treatment for 24 h with HC resulted in the emergence of large round structures in
the near vicinity of the nucleus and in the cytoplasm, which stained both for NFAT5 and GR, with red
and green staining being superimposed (Figure 4). Besides, small yellow dots were observed in
untreated DMDFibro where both NFAT5 and GR were superimposed. After 24 h with 8 mM HC,
DMDFibro showed very small yellow structures in the nucleus (white star), which stain for NFAT5
and GR. Orange dots were visible both after 8 mM HC and 8 mM MP treatment for 24 h, with small
orange dots in 8 mM MP and large ones in 8 mM HC. In orange dots, NFAT5 and GR were very close
to each other but not superimposed. In UFibro, small yellow dots and large orange dots were seen
in the absence of treatment or treatment for 24 h with 8 mM HC. After 24 h with 8 mM MP, UFibro
revealed large amounts of yellow round structures in the perinuclear area, which stained for NFAT5
and GR (Figure 5).

Colocalization of NFAT5 with GR was further evaluated by ImageJ (Figure 6A). In DMDFibro,
HC provided the highest colocalization indexes of NFAT5 with GR (Figure 6A, upper graph). This was
only observed in UFibro treated for 24 h with 8 mM MP (Figure 6A, lower graph). By siRNA GR,
the interaction between NFAT5 and GR was further validated. When GR was silenced, NFAT5 protein
was present in the same amount as the controls on WB after 24 h treatment with 8 mM HC, both in
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DMDFibro and UFibro. In DMDFibro treated for 24 h with 8 mM MP, NFAT5 protein was even
increased (Figure 6B).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 16 
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2.2. Insight into the Effect of Hydrocortisone and Methylprednisolone on DMD Fibroblast Growth through 
NFAT5-GR Interaction 

Figure 3. NFAT5 expression in DMD and unaffected fibroblasts treated for 12 d with hydrocortisone
or methylprednisolone NFAT5 mRNA is significantly decreased in DMDFibro after 12 d treatment
with 8 mM MP (p < 0.01) and UFibro after 24 h treatment with 8 mM MP (p < 0.001) (A). In Western
blotting (WB), three passages are shown per condition (C1 = control passage 1, C2 = control passage
2, C3 = control passage 3, HC1 = hydrocortisone passage 1, HC2 = hydrocortisone passage 2, HC3 =

hydrocortisone passage 3, MP1 = methylprednisolone passage 1, MP2 = methylprednisolone passage 2,
MP3 = methylprednisolone passage 3). NFAT5 protein is significantly decreased in DMDFibro (p < 0.01
for HC and p < 0.001 for MP) after 24 h of 8 mM HC or 8 mM MP treatment. This decrease remains
present after 12 days in both treatment conditions (p < 0.05). GR protein is significantly decreased in
DMDFibro (p < 0.05 for HC and p < 0.01 for MP) after 12 days of 8 mM HC or 8 mM MP treatment.
The only significant decrease in UFibro is present after 24 h treatment with 8 mM MP (p < 0.001) (B) (n = 3).
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Figure 4. NFAT5 and GR localization in DMD fibroblasts treated for 24 h with hydrocortisone or 
methylprednisolone NFAT5 (red) and GR (green) are visualized by immunofluorescence. Nuclei are 
stained in DAPI (blue). Small yellow dots are seen in untreated DMDFibro (small white arrowheads). 
Here, both NFAT5 and GR are superimposed. Large yellow colocalization is only seen in DMDFibro 
with 8 mM HC (large white arrowheads). Orange dots are visible both after 8 mM HC and 8 mM MP 
treatment for 24 h, with small orange in 8 mM (small white arrow) and large ones in 8 mM HC (large 
white arrow). In orange dots, NFAT5 and GR are very close to each other but not superimposed. After 
24 h with 8 mM HC, DMDFibro display very small yellow structures in the nucleus (white star), which 
stain for NFAT5 and GR (insets; n = 3). 

Figure 4. NFAT5 and GR localization in DMD fibroblasts treated for 24 h with hydrocortisone or
methylprednisolone NFAT5 (red) and GR (green) are visualized by immunofluorescence. Nuclei are
stained in DAPI (blue). Small yellow dots are seen in untreated DMDFibro (small white arrowheads).
Here, both NFAT5 and GR are superimposed. Large yellow colocalization is only seen in DMDFibro
with 8 mM HC (large white arrowheads). Orange dots are visible both after 8 mM HC and 8 mM
MP treatment for 24 h, with small orange in 8 mM (small white arrow) and large ones in 8 mM HC
(large white arrow). In orange dots, NFAT5 and GR are very close to each other but not superimposed.
After 24 h with 8 mM HC, DMDFibro display very small yellow structures in the nucleus (white star),
which stain for NFAT5 and GR (insets; n = 3).
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hydrocortisone or methylprednisolone NFAT5 (red) and GR (green) are visualized by 
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Figure 5. NFAT5 and GR localization in unaffected skeletal muscle fibroblasts treated for 24 h with
hydrocortisone or methylprednisolone NFAT5 (red) and GR (green) are visualized by immunofluorescence.
Nuclei are stained in DAPI (blue). Small yellow dots (small white arrowheads) and large orange dots
(large white arrows) are seen in untreated UFibro or after treatment for 24 h with 8 mM HC. After 24 h
with 8 mM MP, UFibro display large amounts of yellow round structures in the perinuclear area (large
white arrowheads), which stain for NFAT5 and GR (n = 3).
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8 mM HC or MP. GR is very weakly present after GRsiRNA compared to control cells (B). 

  

Figure 6. NFAT5 and GR colocalization indexes in DMD and unaffected skeletal muscle fibroblasts
treated for 24 h with hydrocortisone or methylprednisolone and study of NFAT5 expression after
GRsiRNA. Colocalization indexes were established by means of ImageJ. High indexes are observed in
DMDFibro treated for 24 h with 8 mM HC and in UFibro treated with 8 mM MP for 24 h (n = 3) (A).
After GRsiRNA in DMDFibro and UFibro, NFAT5 is expressed in both cell lines treated for 24 h with
8 mM HC or MP. GR is very weakly present after GRsiRNA compared to control cells (B).
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3. Discussion

NFAT5 is known for modulating NF-κB under hyperosmolar conditions. More specifically, NFAT5-
NF-κB complexes bind to the κB elements of NF-κB genes, thereby enhancing NF-κB activity [26].
The inhibition of NF-κB by GCs is a well described phenomenon. It occurs by induction of the IκB
alpha inhibitory protein, trapping activated NF-κB in inactive cytoplasmic complexes [24,27]. In this
work, only one culture of healthy skeletal muscle fibroblasts and one of DMD fibroblasts could be used.
The COVID-19 pandemic abrogated further cell culture work. A larger study with more cell lines is
planned. Here, DMD fibroblasts exposed for 24 h to HC and to a lesser extend MP showed NFAT5
colocalizing with GR in round structures located in the perinuclear area and the cytoplasm. In some
DMD nuclei, similar structures were observed. These structures were also observed in unaffected
skeletal muscle fibroblasts exposed for MP during 24 h. Interestingly, IκB masks the nuclear localization
signal (NLS) of NF-κB, thereby blocking its nuclear translocation [28]. Localization of NFAT5-GR
complexes in the cytoplasm could occur by masking of the NF-κB NLS, due to the presence of HC or
MP induced IκB. With NFAT5 being merely located in the nucleus of DMD fibroblasts [22], GR could
also bind to NFAT5 in the nucleus, inducing decreased cell growth over time. It could be conceivable
after HC or MP treatment, DMD fibroblasts form NF-κB–NFAT-GR complexes in the cytoplasm and
even the nucleus. In this study, a difference in DMD fibroblast confluence was noticed only after five
days (120 h), whereas the control cells continued to grow for 12 d. This drop may be explained by the
half-life of 10 h of NFAT5 [28,29]. The decrease in NFAT5 expression in unaffected skeletal muscle
fibroblast after 24 h MP treatment was not noticed after 12 d treatment, possibly indicating to a cellular
mechanism in healthy fibroblasts overcoming the NFAT5-GR binding. With NFAT5 being essential
to fibroblasts survival, this mechanism could prevent fibroblasts from MP induced cell growth stop.
However, treatment for 12 d with HC or MP revealed a significant decrease in GR in DMDFibro.
The surgical left-over of the DMD patient was taken in a year where GCs intake by the patient is very
likely. Differences in GCs sensitivity are a phenomenon also described in DMD [30]. If GR resistance
is the underlying mechanism, which could explain this difference in sensitivity over time and GR
interacting with NFAT5, an impact on NFAT5 expression could be expected in DMD fibroblasts. Indeed,
if GR disappears over time, NFAT5 could re-emerge in DMD fibroblasts, thereby helping these cells
regaining their fibrotic potential. This could be investigated further with longer cell culture times.

NFAT5 is also known for stimulating tumor growth factor TGF-β [31]. TGF-β is an important
player in the formation of fibrosis [32], therefore a putative trapping of NFAT5 along with the well
described downregulation of NF-κB in fibroblasts by HC and MP could explain the decreased fibroblast
cell growth, which was observed. In DMD, prednisone therapy for 6 months results in significantly
decreased endomysial connective tissue formation, the latter being mainly produced by fibroblasts [33].
The immunomodulatory effect of GCs is also well documented in DMD. These drugs have the ability to
reduce the amount of mononuclear inflammatory cells and dendritic cells in DMD tissue [34]. However,
the immune modulation cannot explain the entire range of effects of GCs in DMD [35]. MP is known
for being 4 times relatively more potent than HC [36]. This was also observed in unaffected skeletal
muscle fibroblasts at time point + 24 h with a significant decrease in NFAT5 protein expression after
treatment with 8 mM MP, which was not observed after 8 mM HC. Appearance of round structures
in the cytoplasm where NFAT5 and GR colocalized was noticed after treatment for 24 h with 8 mM
MP. Hydrocortisone is equivalent to the naturally produced cortisol in the adrenal glands. The need
for higher dosages of HC before an impact is noticed on NFAT5 could be a safeguard mechanism of
the cell. Indeed, it would not be in the interest of fibroblasts to enter cell arrest after minor cortisone
releases such as surgery or minor illnesses. At rest, adolescents produce 5–7 mg/m2/day of cortisol [37].
This production is increased by 3–5 times during surgery or minor illnesses, which returns to baseline
within 24 h [38] and up to 10 times during severe trauma or surgery with up to 200–500 mg/day, which
returns to baseline within 5 days [39]. It is not only important for cell viability that cortisol levels reenter
physiological levels within days, also suppression of the hypothalamic-pituitary-adrenal (HPA) axis
should be avoided in the body. DMD patients generally receive dosages of 0.75 mg/kg/day prednisolone,
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which averages 8 times the physiologic dose of hydrocortisone of 10 mg/m2/day, potentially leading to
HPA axis disturbance [40] and could have an influence on other types of cells in the body. The 8 mM
MP used in this study was within the range of plasma levels in DMD patients, meaning 8 times
the physiological dosage of HC. When using 80 mM HC in this study, no decrease was observed in
cell growth in unaffected skeletal muscle treated for 12 d with this dosage, possibly pointing to a
safeguard mechanism in these cells to avoid loss of cell viability. However, at such dosages the HPA
axis will be altered. The benefits of GCs usage in DMD should balance the downsides, which remains
a physiological complex challenge.

In summary, treatment with 8 mM HC or 8 mM MP induced reduced cell growth in DMD
fibroblasts, possibly due to colocalization of GR to NFAT5. Daily treatment with these GCs resulted in
decreased NFAT5 and GR expression at 12 days. With NFAT5 being essential for fibroblast growth,
these findings may help explain the influence of glucocorticoids in slowing down the process of fibrosis
in DMD by modulating NFAT5 localization in the cell.

4. Materials and Methods

All methods were applied as described in our previous work [25].

4.1. Cell Lines

The Myobank Banque D’ADN (Paris, France) provided two primary fibroblast cell lines, obtained
after patient’s consent. DMDFibro is a DMD fibroblast cell line originating from a DMD patient,
male and 11 years old, from a surgical left-over from paravertebral muscle obtained during chirurgical
treatment of scoliosis. UFibro are unaffected skeletal muscle fibroblasts donated by a healthy male donor,
aged 17, from a surgical left-over of paravertebral muscle during scoliosis surgery. Both individuals
were teenagers. More cell lines could not be cultured due to the COVID-19 pandemic.

Both cell lines were grown each in three different passages (n = number of passages; Supplementary
Table S1) after Ethics Committee’s approval. DMEM contained all vital components and was
supplemented with 10% FCS (Cambrex, Bioscience, Walkersville, MD, USA), penicillin (50 IU/mL,
Gibco, Invitrogen, Carlsbad, CA, USA + streptomycin (50 mg/mL; Gibco), glucose and 1% L-glutamine
(Life Technologies, Carlsbad, CA, USA) for healthy and germ free cell growth. Monthly checking for
the presence of mycoplasma was performed with the MycoAlert Plus Kit (Lonza, Basel, Switzerland).
All tests were negative for contamination during the entire experiment in both cell lines. Eurofins
Genomics (Eurofins Scientific Group, Luxemburg, Luxemburg) identified both cell lines as explained
in a previous work [22].

4.2. Cell Viability and Life Imaging by IncuCyte ZOOM

Fibroblasts seeded in low amounts (50 cells per cm2) shift toward the myofibroblast phenotype,
which can be lost again in 3 d when seeded at high density (5.000 cells per cm2) [41]. Therefore,
all seedings occurred at high density to conserve the fibroblast phenotype. DMDFibro and UFibro
(n = 3) were seeded in a 24-NUNC well plate (Nalge Nunc International, Rochester, NY, USA;
4.000 cells/well, 1 mL/well and 1 well = 2 cm2) and incubated at 5% CO2 and 37 ◦C in the IncuCyte
ZOOM (Essen Bioscience, Hertfordshire, UK) with real-time capturing of cell confluence over time.
For 12 d, cells received daily addition of DMEM supplemented with following concentrations for
HC (Solu-Cortef®, Pfizer, New York City, NY, USA) and MP (Solu-Medrol S.A.B.®, Pfizer): 80 nM
(0.025 ng/mL), 8 µM (2.5 ng/mL), 80 µM (25 ng/mL), 8 mM (2.5 µg/mL) and 80 mM (25 µg/mL).
Microscopic images (4 images/well) were taken every 2 h for the indicated time (24 h or 12 d).
The IncuCyte Software (Essen Bioscience, Hertfordshire, UK) analyzed all data, resulting in cell
confluency values. To determine the correct HC and MP dosages usable in cell cultures, cell viability
was measured by CellTiter-Glo® (Promega, Madison, WI, USA) luminescent cell viability assay
following the supplier’s protocol. Briefly, this assay measured the presence of ATP produced by the
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cells at time point + 12 d and their viability by means of a bioluminescent reaction in the presence of
luciferine and luciferase, expressed in relative light units (RLU).

4.3. Treatment with Methylprednisolone or Hydrocortisone

Optimal concentrations were established for HC and MP based on the results obtained from the
growth curves and cell viability assays, and chosen in the ranges of free MP and HC concentrations in
plasma as described above. DMEM was supplemented with 8 mM HC or 8 mM MP except for the
controls, which received only DMEM. These HC and MP concentrations were used in cells seeded in
8-chamber slides (LabTek II, Nunc, Penfield, Hudson, MA, USA) for ICC studies or to 75-cm2 flasks for
WB and RT-qPCR. All cell lines were treated for 24 h or 12 d with 8 mM HC or 8 mM MP.

4.4. RT-qPCR

DMDFibro and UFibro confluently grown in 75-cm2 flasks were exposed to 8 mM HC or 8 mM
MP for 24 h and up to 12 d. Lysis needed a minimum purity of 1.9/2 measured by the A260/A280
ratio on BioDrop™ Touch Duo PC (Harvard Bioscience Inc., Holliston, MA, USA) [42]. RT-qPCR was
carried out following minimum information for publication of quantitative real-time PCR experiments
(MIQE) guidelines [43] and results were obtained by calculation with qBase+ Software version 2.6
(www.qbaseplus.com; Biogazelle, Zwijnaarde, Belgium) [44]. The 3 most stable reference genes were
chosen from a set of tested candidate reference genes using geNorm (Supplementary Table S2).

4.5. Quantitative Western Blotting (WB)

Primary antibodies were applied to proteins from total protein extracts, which had been transferred
to nitrocellulose membranes by electroblotting (Supplementary Table S3). Differences in protein
concentration between samples were corrected using antitubulin (Sigma-Aldrich, St. Louis, MO,
USA). Chemiluminescence (WesternBright™ Sirius, Advansta, Menlo Park, CA, USA) allowed
one to visualize the immunoreactions under the Proxima 2650 (Isogen Life Science, De Meern,
The Netherlands). Selectivity of the NFAT5 antibody was tested using siRNA NFAT5 (h): sc-43968
(Santa Cruz Biotechnology, Dallas, TX, USA) in DMDFibro as described earlier [25].

4.6. GR siRNA

Mechanistic insight into the interaction of GC with NFAT5 in fibroblast proliferation was partly
provided by GR siRNA. By silencing GR gene expression, fibroblasts were not able to produce mRNA
coding for GR. The lack of GR resulted in GC inactivity. By studying NFAT5 expression at time
point + 24 h (WB) and comparing to fibroblasts without GR silencing, the influence of GC on NFAT5
was determined. GR silencing was performed as follows: 4 µL GR siRNA (h): sc-35505 (Santa Cruz
Biotechnology,) was diluted in 2 mL serum free DMEM (=20 nM). The specificity of GR siRNA was
determined by diluting 2 µL scrambled RNA (scRNA) in 2 mL serum free “DMEM”. Transfection was
obtained by addition and incubation for 5’ at RT of 75 µL lipofectamine 2000 (ThermoFisher Scientific,
Waltham, MA, USA) in 2 mL serum free DMEM. Subsequently, vials were added to siRNA and scRNA
solutions followed by gentle mixing for 20′ at RT. Finally, flasks were incubated at 37 ◦C with 5% CO2

for 24 h.

4.7. Immunocytochemistry (ICC) and Confocal Microscopy (CM)

Staining procedures have been described in an earlier work [25]. Briefly, incubation during 1 h of
primary antibodies was followed by another hour with secondary antibody to which AlexaFluor-488
(green) or AlexaFluor-555 (red) were attached (Invitrogen, Waltham, MA, USA). Antibodies and
concentrations can be found in Supplementary Table S4. All specificity tests were performed in both
cell lines: secondary antibody specificity with and without IgG Mouse or IgG Goat in the same

www.qbaseplus.com
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concentrations as in the primary antibodies, siRNA GR and siRNA NFAT5. Positive controls were
performed in unaffected myoblasts [25].

Confocal images were captured with a Zeiss LSM880 confocal microscope and its 40×Plan-
Apochromat/1.3 oil objective, where the pinhole was set at 1Airy Unit (Zeiss, Jena, Germany).
Colocalization indexes M1 (NFAT5) and M2 (GR), Pearson’s correlation coefficient (r) and Mander’s
Overlap coefficient (R) and were measured with Image J [25,45].

4.8. Statistical Analysis

By means of SPSS 27.0 (IBM, Armonk, NY, USA), mean and standard deviation were obtained
for each cell line passage at each time point and for each condition: control, 8 mM HC and 8 mM MP.
By using one-way ANOVA with Tukey’s multiple comparison test, means and standard deviations
from three biological replicates led to one mean and one standard deviation, considering: * = p < 0.05,
** = p < 0.01 and *** = p < 0.005.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/23/
9225/s1.
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Abbreviations

CBG corticoid binding globulin
DAG donkey anti goat
DAM donkey anti mouse
DMD Duchenne muscular dystrophy
DMDFibro Duchenne muscular dystrophy fibroblasts
DMEM Dulbecco’s modified Eagle medium
ECM extracellular matrix
FITC fluorescein isothiocyanate
GCs glucocorticoids
GR glucocorticoid receptor
HC hydrocortisone
HCSS hydrocortisone sodium succinate
HPA hypothalamic-pituitary-adrenal
ICC immunocytochemistry
IM intramuscular
IV intravenous
MIQE minimum information for publication of quantitative real-time PCR experiments
MP methylprednisolone
MPSS methylprednisolone sodium succinate
N number of passages
NFAT5 nuclear factor of activated T-cells 5
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
RLU relative light units
RT-qPCR real-time quantitative PCR
scRNA scrambled RNA
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siRNA silencing RNA
UFibro unaffected skeletal muscle fibroblasts
UMyo1 unaffected myoblasts
WB Western blotting
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