1,138 research outputs found
On the Efetov-Wegner terms by diagonalizing a Hermitian supermatrix
The diagonalization of Hermitian supermatrices is studied. Such a change of
coordinates is inevitable to find certain structures in random matrix theory.
However it still poses serious problems since up to now the calculation of all
Rothstein contributions known as Efetov-Wegner terms in physics was quite
cumbersome. We derive the supermatrix Bessel function with all Efetov-Wegner
terms for an arbitrary rotation invariant probability density function. As
applications we consider representations of generating functions for Hermitian
random matrices with and without an external field as integrals over
eigenvalues of Hermitian supermatrices. All results are obtained with all
Efetov-Wegner terms which were unknown before in such an explicit and compact
representation.Comment: 23 pages, PACS: 02.30.Cj, 02.30.Fn, 02.30.Px, 05.30.Ch, 05.30.-d,
05.45.M
Fast Gaussian Pairwise Constrained Spectral Clustering
International audienceWe consider the problem of spectral clustering with partial supervision in the form of must-link and cannot-link constraints. Such pairwise constraints are common in problems like coreference resolution in natural language processing. The approach developed in this paper is to learn a new representation space for the data together with a dis-tance in this new space. The representation space is obtained through a constraint-driven linear transformation of a spectral embedding of the data. Constraints are expressed with a Gaussian function that locally reweights the similarities in the projected space. A global, non-convex optimization objective is then derived and the model is learned via gradi-ent descent techniques. Our algorithm is evaluated on standard datasets and compared with state of the art algorithms, like [14,18,31]. Results on these datasets, as well on the CoNLL-2012 coreference resolution shared task dataset, show that our algorithm significantly outperforms related approaches and is also much more scalable
Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review
QuestionWhat are the effects of strength training alone, exercise therapy alone, and exercise with additional passive manual mobilisation on pain and function in people with knee osteoarthritis compared to control? What are the effects of these interventions relative to each other?DesignA meta-analysis of randomised controlled trials.ParticipantsAdults with osteoarthritis of the knee.Intervention typesStrength training alone, exercise therapy alone (combination of strength training with active range of motion exercises and aerobic activity), or exercise with additional passive manual mobilisation, versus any non-exercise control. Comparisons between the three interventions were also sought.Outcome measuresThe primary outcome measures were pain and physical function.Results12 trials compared one of the interventions against control. The effect size on pain was 0.38 (95% CI 0.23 to 0.54) for strength training, 0.34 (95% CI 0.19 to 0.49) for exercise, and 0.69 (95% CI 0.42 to 0.96) for exercise plus manual mobilisation. Each intervention also improved physical function significantly. No randomised comparisons of the three interventions were identified. However, meta-regression indicated that exercise plus manual mobilisations improved pain significantly more than exercise alone (p = 0.03). The remaining comparisons between the three interventions for pain and physical function were not significant.ConclusionExercise therapy plus manual mobilisation showed a moderate effect size on pain compared to the small effect sizes for strength training or exercise therapy alone. To achieve better pain relief in patients with knee osteoarthritis physiotherapists or manual therapists might consider adding manual mobilisation to optimise supervised active exercise programs
Abdominal aortic calcification on a plain X-ray and the relation with significant coronary artery disease in asymptomatic chronic dialysis patients
BACKGROUND: Coronary artery disease (CAD) is common in asymptomatic chronic dialysis patients and plays an important role in their poor survival. Early identification of these high-risk patients could improve treatment and reduce mortality. Abdominal aortic calcification (AAC) has previously been associated with CAD in autopsy studies. Since the AAC can be quantified easily using a lateral lumbar X-ray we hypothesized that the extent of AAC as assessed on a lateral lumbar X-ray might be predictive of the presence of significant CAD in dialysis patients. METHODS: All patients currently enrolled in the ICD2 trial without a history of CABG or a PCI with stent implantation were included in this study. All patients underwent CT-angiography (CTA) and a lateral X-ray of the abdomen. AAC on X-ray was quantified using a previously validated scoring system whereupon the association between AAC and the presence of significant CAD was assessed. RESULTS: A total of 90 patients were included in this study (71% male, 67 ± 7 years old). Forty-six patients were found to have significant CAD. AAC-score was significantly higher in patients with CAD (10.1 ± 4.9 vs 6.3 ± 4.6 (p < 0.05). Multivariate regression analysis revealed that AAC score is an independent predictor for the presence of CAD with a 1,2 fold higher risk per point increase (p < 0.01). The AAC score has a sensitivity of 85% and a specificity of 57% for the presence of significant CAD. CONCLUSION: This study shows that abdominal aortic calcification as assessed on a lateral lumbar X-ray is predictive for the presence of significant coronary artery disease in asymptomatic dialysis patients. This simple, non-invasive and cheap screening method could contribute to early identification of patients eligible for further screening of CAD. TRIAL REGISTRATION: NTR948, registered 10-4-2007 ; ISRCTN20479861, registered 2-5-200
Complaints of the arm, neck and shoulder among computer office workers in Sudan: a prevalence study with validation of an Arabic risk factors questionnaire
<p>Abstract</p> <p>Background</p> <p>Complaints of the arm, neck and/or shoulders (CANS) in general and computer-related disorders in particular affect millions of computer office workers in Western developed countries. However, with the widespread use of computer systems in developing countries, the associated musculoskeletal complaints are yet to be investigated.</p> <p>Aim</p> <p>To study the prevalence of work-related CANS, among computer office workers in Sudan, and to test the psychometric properties of a translated Dutch questionnaire in Arabic language.</p> <p>Methods</p> <p>In 2005 282 computer office workers at a mobile telecommunication company and three banks in Khartoum, Sudan, received an Arabic language version of the validated Maastricht upper extremity questionnaire (MUEQ). The questionnaire holds 109 items covering demographic characteristics, in addition to six main domains (i.e. work station, body posture, break time, job control, job demands and social support) assessing potential physical and psychosocial risk factors. Forward/backward translation of the MUQE was done independently by two different translators. Prevalence over the past year were computed for CANS. Further, the psychometric properties of the Arabic questionnaire were investigated (i.e. factor structure and reliability) and cross-validation was carried out.</p> <p>Results</p> <p>The response rate of the questionnaire was 88% (n = 250). The one-year prevalence of CANS showed that 53% of the respondents could be classified as mild cases. The highest incidences were found for neck and shoulder symptoms (64% and 41% respectively). The analysis of the psychometric properties of the scale resulted in the identification of 2 factors for each of the 6 domains (i.e. office equipment, computer position, head and body posture, awkward body posture, autonomy, quality of break time, skill discretion, decision authority, time pressure, task complexity, social support, and work flow). The calculation of internal consistency and cross validation provided evidence of reliability and lack of redundancy of items.</p> <p>Conclusion</p> <p>The prevalence of CANS among the targeted population seems to correspond strongly with prevalence of CANS in Western developed countries. The Arabic translation of the MUEQ has satisfactory psychometric properties to be used to assess work-related risk factors for the development of CANS among computer office workers in Sudan.</p
Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi
Intraoperative microelectrode recording (MER) for targeting during deep brain stimulation (DBS) procedures has been evaluated over a period of 4 years, in 57 consecutive patients with Parkinson's disease, who received DBS in the subthalamic nucleus (STN-DBS), and 28 consecutive patients with either dystonia (23) or Parkinson's disease (five), in whom the internal segment of the globus pallidus (GPi-DBS) was targeted. The procedure for DBS was a one-stage bilateral stereotactic approach using a combined electrode for both MER and macrostimulation. Up to five micro/macro-electrodes were used in an array with a central, lateral, medial, anterior, and posterior position. Final target location was based on intraoperative test stimulation. For the STN, the central trajectory was chosen for implantation in 50% of the cases and for the globus pallidus internus (GPi) in 57% of the cases. Furthermore, in 64% of the cases, the channel selected for the permanent electrode corresponded with the trajectory having the longest segment of STN MER activity. For the GPi, this was the case in 61%. The mean and standard deviation of the deepest contact point with respect to the magnetic resonance imaging (MRI)-based target for the STN was 2.1 +/- 1.5 mm and for the GPi was -0.5 +/- 1.2 mm. MER facilitates the selection of the final electrode location in STN-DBS and GPi-DBS, and based on the observed MER activity, a pre-selection could be made as to which channel would be the best candidate for macro-test stimulation and at which depth should be stimulated. The choice of the final location is based on intraoperative test stimulation, and it is demonstrated that regularly it is not the central channel that is chosen for implantation. On average, the target as defined by MER activity intensity was in accordance with the MRI-based targets both for the STN and GPi. However, the position of the best MER activity did not necessarily correlate with the locus that produced the most beneficial clinical response on macroelectrode testing intraoperativel
Introductory clifford analysis
In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications
Rangelands Vegetation Mapping at Species Composition Level Using the \u3cb\u3eSPiCla\u3c/b\u3e Method: \u3cb\u3eS\u3c/b\u3eDM Based \u3cb\u3ePi\u3c/b\u3exel \u3cb\u3eCla\u3c/b\u3essification and Fuzzy Accuracy. A New Approach of Map Making
Vegetation maps have been made since centuries. The vegetation cover was represented as homogeneous mapping units (polygons), representing different vegetation types, where each type consists a combination of different plant species (floristic composition). More recent, with the use of satellite imagery, the polygons have been replaced by pixels with similar content as the polygon maps. In both approaches, field-observations were linked to the mapping units (polygons or pixels) often resulting in a complex of different vegetation types per mapping unit. In our new approach field data (sample points) on presence and abundance of individual grass species are spatially extrapolated based on a set of environmental layers, using the species distribution modelling approach (SDM). When combined, each pixel will contain its own set of information about the vegetation structure and its floristic composition. This new methodology (SPiCla) results in a very accurate and detailed vegetation map at pixel level, allowing extraction of very detailed, accurate and easy to update spatial information on e.g., forage production and quality (palatability) for rangelands management. As no exact boundaries exist, but only gradients, we introduced fuzzy accuracy. The resolution mainly depends on the resolution of (or one of) the environmental layers used, scale of interest and workability. The methodology is generic and applicable to any other region in the world
- …